SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Commensalism

18

Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.

Concepts: Immune system, Scientific method, Bacteria, Symbiosis, Prediction, Bird, Parasitism, Commensalism

17

Commensalism within anthropogenic environments has not been extensively discussed, despite its impact on humans, and there is no formal framework for assessing this ecological relationship in its varied forms. Here, we examine commensalism in anthropogenic environments in detail, considering both ecological and evolutionary drivers. The many assumptions about commensalism and the nature of anthropogenic environments are discussed and we highlight dependency as a key attribute of anthropogenic commensals (anthrodependent taxa). We primarily focus on mammalian species in the anthropogenic-commensal niche, but the traits described and selective pressures presented are likely fundamental to many species engaged in intense commensal relationships with humans. Furthermore, we demonstrate that this largely understudied interaction represents an important opportunity to investigate evolutionary processes in rapidly changing environments.

Concepts: Natural selection, Biodiversity, Evolution, Species, Ecology, Symbiosis, Bird, Commensalism

16

With over 1 million species on earth, each biologically unique, do we have any hope of understanding whether species will persist in a warming world? We might, because it turns out that there is surprising regularity in how warming accelerates the major metabolic processes that power life. A persistent challenge has been to understand ecological effects of temperature in the context of species interactions, especially when individuals not only experience temperature but also mortality due to parasitism or predation. Kirk et al. have shown how the effects of parasites vary with warming in a manner entirely consistent with general temperature dependence of host and parasite metabolism.

Concepts: Bacteria, Evolution, Biology, Organism, Life, Ecology, Symbiosis, Commensalism

13

Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.

Concepts: Gene expression, Fungus, Symbiosis, Parasitism, Ant, Mutualism, Commensalism, Kleptoparasitism

12

Facultative animal-bacteria symbioses, which are critical determinants of animal fitness, are largely assumed to be mutualistic. However, whether commensal bacteria benefit from the association has not been rigorously assessed. Using a simple and tractable gnotobiotic model- Drosophila mono-associated with one of its dominant commensals, Lactobacillus plantarum-we reveal that in addition to benefiting animal growth, this facultative symbiosis has a positive impact on commensal bacteria fitness. We find that bacteria encounter a strong cost during gut transit, yet larvae-derived maintenance factors override this cost and increase bacterial population fitness, thus perpetuating symbiosis. In addition, we demonstrate that the maintenance of the association is required for achieving maximum animal growth benefits upon chronic undernutrition. Taken together, our study establishes a prototypical case of facultative nutritional mutualism, whereby a farming mechanism perpetuates animal-bacteria symbiosis, which bolsters fitness gains for both partners upon poor nutritional conditions.

Concepts: Bacteria, Gut flora, Evolution, Symbiosis, Bird, Parasitism, Mutualism, Commensalism

12

The evolution of eusociality in ants and termites propelled both insect groups to their modern ecological dominance. Yet, eusociality also fostered the evolution of social parasitism-an adverse symbiosis, in which the superorganismal colonies formed by these insects are infiltrated by a profusion of invertebrate species that target nest resources. Predominant among these are the aleocharine rove beetles (Staphylinidae), a vast and ecologically diverse subfamily with numerous morphologically and behaviourally specialized socially parasitic lineages. Here, we report a fossil aleocharine, Mesosymbion compactus gen. et sp. nov., in Burmese amber (∼99 million years old), displaying specialized anatomy that is a hallmark of social parasites. Mesosymbion coexisted in the Burmese palaeofauna with stem-group ants and termites that provide the earliest indications of eusociality in both insect groups. We infer that the advent of eusociality led automatically and unavoidably to selection for social parasitism. The antiquity and adaptive flexibility of aleocharines made them among the first organisms to engage in this type of symbiosis.

Concepts: Evolution, Biology, Insect, Symbiosis, Parasitism, Ant, Mutualism, Commensalism

10

Mucosal sites such as the intestine, oral cavity, nasopharynx, and vagina all have associated commensal flora. The surface of the eye is also a mucosal site, but proof of a living, resident ocular microbiome remains elusive. Here, we used a mouse model of ocular surface disease to reveal that commensals were present in the ocular mucosa and had functional immunological consequences. We isolated one such candidate commensal, Corynebacterium mastitidis, and showed that this organism elicited a commensal-specific interleukin-17 response from γδ T cells in the ocular mucosa that was central to local immunity. The commensal-specific response drove neutrophil recruitment and the release of antimicrobials into the tears and protected the eye from pathogenic Candida albicans or Pseudomonas aeruginosa infection. Our findings provide direct evidence that a resident commensal microbiome exists on the ocular surface and identify the cellular mechanisms underlying its effects on ocular immune homeostasis and host defense.

Concepts: Immune system, Bacteria, Gut flora, Opportunistic infection, Pseudomonas aeruginosa, Bird, Eye, Commensalism

10

Intestinal commensal bacteria induce protective and regulatory responses that maintain host-microbial mutualism. However, the contribution of tissue-resident commensals to immunity and inflammation at other barrier sites has not been addressed. We found that in mice, the skin microbiota have an autonomous role in controlling the local inflammatory milieu and tuning resident T lymphocyte function. Protective immunity to a cutaneous pathogen was found to be critically dependent on the skin microbiota but not the gut microbiota. Furthermore, skin commensals tuned the function of local T cells in a manner dependent on signaling downstream of the interleukin-1 receptor. These findings underscore the importance of the microbiota as a distinctive feature of tissue compartmentalization, and provide insight into mechanisms of immune system regulation by resident commensal niches in health and disease.

Concepts: Immune system, Antibody, Bacteria, Gut flora, Symbiosis, Parasitism, Skin, Commensalism

9

To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals.

Concepts: Bacteria, Gut flora, Protection, Bacteroides, Commensalism

8

It is generally thought that the evolutionary transition to parasitism is irreversible because it is associated with the loss of functions needed for a free-living lifestyle. Nevertheless, free-living taxa are sometimes nested within parasite clades in phylogenetic trees, which could indicate that they are secondarily free-living. Herein, we test this hypothesis by studying the genomic basis for evolutionary transitions between lifestyles in diplomonads, a group of anaerobic eukaryotes. Most described diplomonads are intestinal parasites or commensals of various animals, but there are also free-living diplomonads found in oxygen-poor environments such as marine and freshwater sediments. All these nest well within groups of parasitic diplomonads in phylogenetic trees, suggesting that they could be secondarily free-living.

Concepts: Immune system, Bacteria, Fungus, Intestinal parasite, Symbiosis, Parasitism, Cladistics, Commensalism