SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Color theory

160

Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskties by designing perovskite-based quantum dot materials. We have synthesized monodisperse, colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X=Cl, Br, I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90% and radiative lifetimes in the range of 4-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

Concepts: Quantum dot, Color, Solar cell, Light-emitting diode, Color space, Band gap, Color theory, Gamut

34

Perceptual color space is continuous; however, we tend to divide it into only a small number of categories. It is unclear whether categorical color perception is obtained solely through the development of the visual system or whether it is affected by language acquisition. To address this issue, we recruited prelinguistic infants (5- to 7-mo-olds) to measure changes in brain activity in relation to categorical color differences by using near-infrared spectroscopy (NIRS). We presented two sets of geometric figures to infants: One set altered in color between green and blue, and the other set altered between two different shades of green. We found a significant increase in hemodynamic responses during the between-category alternations, but not during the within-category alternations. These differences in hemodynamic response based on categorical relationship were observed only in the bilateral occipitotemporal regions, and not in the occipital region. We confirmed that categorical color differences yield behavioral differences in infants. We also observed comparable hemodynamic responses to categorical color differences in adults. The present study provided the first evidence, to our knowledge, that colors of different categories are represented differently in the visual cortex of prelinguistic infants, which implies that color categories may develop independently before language acquisition.

Concepts: Psychology, Brain, Cognition, Visual perception, Color, Occipital lobe, Near infrared spectroscopy, Color theory

28

Electrochromic polymers (ECPs) have been shown to be synthetically tunable, producing a full palette of vibrantly colored to highly transmissive polymers. The development of these colored-to-transmissive ECPs employed synthetic design strategies for broad color targeting; however, due to the subtleties of color perception and the intricacies of polymer structure and color relationships, fine color control is difficult. In contrast, color mixing is a well-established practice in the printing industry. We have identified three colored-to-transmissive switching electrochromic polymers, referred to as ECP-Cyan (ECP-C), ECP-Magenta (ECP-M), and ECP-Yellow (ECP-Y), which, via the co-processing of multicomponent ECP mixtures, follow the CMY color mixing model. The presented work qualitatively assesses the thin film characteristics of solution co-processed ECP mixtures. To quantitatively determine the predictability of the color properties of ECP mixtures, we estimated mass extinction coefficients (εmass) from solution spectra of the CMY ECPs and compared the estimated and experimentally observed color values of blends via a calculated color difference (ΔEab). The values of ΔEab range from 8 to 26 across all mixture compositions, with an average value of 15, representing a reasonable degree of agreement between predicted and observed color values. We demonstrate here the ability to co-process ECP mixtures into vibrantly colored, visually continuous films and the ability to estimate the color properties produced in these mixed ECP films.

Concepts: Polymer, Color, Printing, Primary color, RGB color model, Color space, Color theory, Mix

26

‘The dress’ is a peculiar photograph: by themselves the dress' pixels are brown and blue, colors associated with natural illuminants [1], but popular accounts (#TheDress) suggest the dress appears either white/gold or blue/black [2]. Could the purported categorical perception arise because the original social-media question was an alternative-forced-choice? In a free-response survey (N = 1401), we found that most people, including those naïve to the image, reported white/gold or blue/black, but some said blue/brown. Reports of white/gold over blue/black were higher among older people and women. On re-test, some subjects reported a switch in perception, showing the image can be multistable. In a language-independent measure of perception, we asked subjects to identify the dress' colors from a complete color gamut. The results showed three peaks corresponding to the main descriptive categories, providing additional evidence that the brain resolves the image into one of three stable percepts. We hypothesize that these reflect different internal priors: some people favor a cool illuminant (blue sky), discount shorter wavelengths, and perceive white/gold; others favor a warm illuminant (incandescent light), discount longer wavelengths, and see blue/black. The remaining subjects may assume a neutral illuminant, and see blue/brown. We show that by introducing overt cues to the illumination, we can flip the dress color.

Concepts: Light, Perception, Color, Qualia, Color space, Color theory, International Commission on Illumination, Gamut

25

Assessing the coverage of the color space of Recommendation ITU-R BT.2020 (Rec. 2020) has become increasingly important in the design of wide-gamut displays, and an appropriate metric for measuring the display gamut size is urgently needed. Display manufactures calculate the area ratios of their displays' RGB triangles to a standard RGB triangle in the CIE 1931 xy or CIE 1976 u'v' chromaticity diagram to indicate the displays' relative gamut size. However, they typically fail to mention which of the two diagrams the metric is based on. This paper shows that the ratios calculated in the two chromaticity diagrams are highly inconsistent, and that the Rec. 2020 area-coverage ratios for wide-gamut displays in the xy diagram are much more correlated to the Rec. 2020 volume-coverage ratios in some color-appearance spaces than the Rec. 2020 area-coverage ratios in the u'v' diagram. This paper recommends the use of the xy diagram for area-coverage ratio calculations for wide-gamut displays.

Concepts: Color, Color space, Color theory, CIE 1931 color space, Lab color space, RGB color space, Gamut, Luminance

25

This study tested whether systematic associations between colors and concepts can be used to infer meaning from visual displays. It is well-known from the Stroop Effect that people are faster at reading a color word when displayed in a congruent text color than in an incongruent color (e.g. “RED” in red ink vs. green ink). However, it is unknown whether this type of facilitation/interference generalizes to abstract associations in ecologically valid domains. We addressed this question within the domain of recycling. We first tested whether participants have systematic associations between colors and to-be-discarded items: paper, glass and trash (Experiment 1). For each object, participants rated how strongly they associated it with each of the Berkeley Color Project 37 colors. White was systematically associated with paper, light blue with glass, and black with trash. In Experiment 2, we tested whether a different group of participants was better at discarding trash/recyclables in bins whose colors were consistent with empirically-derived mappings from Experiment 1 (color-concept consistent) than in bins whose colors were determined from ecologically-based mappings of trash/recycling bins in their environment (Brown University). During each trial participants saw a display of three bins colored in an empirically-based or an ecologically-based color scheme, along with the name of an object (paper, glass or trash). They were instructed to choose which bin was appropriate for discarding the object. The bins were not labeled so participants could only rely on their color intuitions to complete the task. Trials included all combinations of each object (paper/glass/trash) with each color scheme (color positions counterbalanced). Participants were faster and more accurate at discarding objects in the empirically-based colored bins scheme than in ecologically-based bins. The results suggest that not only do people have strong color-concept associations, but color-coding according to those associations facilitates inferring meaning from visual displays. Meeting abstract presented at VSS 2015.

Concepts: Light, Color, Green, Red, Object, Color theory, Display device, Color wheel

21

Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

Concepts: Photon, Electromagnetic radiation, Color, Printing, Hue, Visible spectrum, Color theory, Colorfulness

9

We report a straightforward strategy of accessing a wide variety of colors through simple predictive color mixing of electrochromic polymers (ECPs). We have created a set of brown ECP blends that can be incorporated as the active material in user-controlled electrochromic eyewear. Color mixing of ECPs proceeds in a subtractive fashion, and we acquire various hues of brown through the mixing of cyan and yellow primaries in combination with orange and periwinkle-blue secondary colors. Upon oxidation, all of the created blends exhibit a change in transmittance from ca. 10 to 70% in a few seconds. We demonstrate the attractiveness of these ECP blends as active materials in electrochromic eyewear by assembling user-controlled, high-contrast, fast-switching, and fully solution-processable electrochromic lenses with colorless transmissive states and colored states that correspond to commercially available sunglasses. The lenses were fabricated using a combination of inkjet printing and blade-coating to illustrate the feasibility of using soluble ECPs for high-throughput and large-scale processing.

Concepts: Color, Orange, Yellow, Hue, Primary color, Color theory, Tertiary color, Secondary color

5

Categorization with basic color terms is an intuitive and universal aspect of color perception. Yet research on visual working memory capacity has largely assumed that only continuous estimates within color space are relevant to memory. As a result, the influence of color categories on working memory remains unknown. We propose a dual content model of color representation in which color matches to objects that are either present (perception) or absent (memory) integrate category representations along with estimates of specific values on a continuous scale (“particulars”). We develop and test the model through 4 experiments. In a first experiment pair, participants reproduce a color target, both with and without a delay, using a recently influential estimation paradigm. In a second experiment pair, we use standard methods in color perception to identify boundary and focal colors in the stimulus set. The main results are that responses drawn from working memory are significantly biased away from category boundaries and toward category centers. Importantly, the same pattern of results is present without a memory delay. The proposed dual content model parsimoniously explains these results, and it should replace prevailing single content models in studies of visual working memory. More broadly, the model and the results demonstrate how the main consequence of visual working memory maintenance is the amplification of category related biases and stimulus-specific variability that originate in perception. (PsycINFO Database Record

Concepts: Mathematics, Visual perception, Color, Metaphysics, Category theory, Working memory, Color theory, Basic Color Terms: Their Universality and Evolution

5

Animals with color vision use color information in intra- and interspecific communication, which in turn may drive the evolution of conspicuous colored body traits via natural and sexual selection. A recent study found that the transparent wings of small flies and wasps in lower-reflectance light environments display vivid and stable structural color patterns, called “wing interference patterns” (WIPs). Such WIPs were hypothesized to function in sexual selection among small insects with wing displays, but this has not been experimentally verified. Here, to our knowledge we present the first experimental evidence that WIPs in males of Drosophila melanogaster are targets of mate choice from females, and that two different color traits-saturation and hue-experience directional and stabilizing sexual selection, respectively. Using isogenic lines from the D. melanogaster Genetic Reference Panel, we compare attractiveness of different male WIPs against black and white visual backgrounds. We show that males with more vivid wings are more attractive to females than are males with dull wings. Wings with a large magenta area (i.e., intermediate trait values) were also preferred over those with a large blue or yellow area. These experimental results add a visual element to the Drosophila mating array, integrating sexual selection with elements of genetics and evo-devo, potentially applicable to a wide array of small insects with hyaline wings. Our results further underscore that the mode of sexual selection on such visual signals can differ profoundly between different color components, in this case hue and saturation.

Concepts: Genetics, Male, Insect, Sexual dimorphism, Color, Drosophila melanogaster, Drosophila, Color theory