Discover the most talked about and latest scientific content & concepts.

Concept: Color blindness


We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide “color-blind” animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins.

Concepts: Photoreceptor cell, Octopus, Color blindness, Cuttlefish, Mollusca, Color, Cephalopod


The results of early studies on colour vision in dogs led to the conclusion that chromatic cues are unimportant for dogs during their normal activities. Nevertheless, the canine retina possesses two cone types which provide at least the potential for colour vision. Recently, experiments controlling for the brightness information in visual stimuli demonstrated that dogs have the ability to perform chromatic discrimination. Here, we show that for eight previously untrained dogs colour proved to be more informative than brightness when choosing between visual stimuli differing both in brightness and chromaticity. Although brightness could have been used by the dogs in our experiments (unlike previous studies), it was not. Our results demonstrate that under natural photopic lighting conditions colour information may be predominant even for animals that possess only two spectral types of cone photoreceptors.

Concepts: Cone cell, Color blindness, Rod cell, Retina, Eye, Color vision, Visual perception, Photoreceptor cell


Humans use three cone photoreceptor classes for colour vision, yet many birds, reptiles and shallow-water fish are tetrachromatic and use four cone classes. Screening pigments, that narrow the spectrum of photoreceptors in birds and diurnal reptiles, render visual systems with four cone classes more efficient. To date, however, the question of tetrachromacy in shallow-water fish, that, like humans, lack screening pigments, is still unsolved. We raise the possibility that tetrachromacy in fish has evolved in response to higher spectral complexity of underwater light. We compared the dimensionality of colour vision in humans and fish by examining the spectral complexity of the colour-signal reflected from objects into their eyes. Here we show that fish require four to six cone classes to reconstruct the colour-signal of aquatic objects at the accuracy level achieved by humans viewing terrestrial objects. This is because environmental light, which alters the colour-signals, is more complex and contains more spectral fluctuations underwater than on land. We further show that fish cones are better suited than human cones to detect these spectral fluctuations, suggesting that the capability of fish cones to detect high-frequency fluctuations in the colour-signal confers an advantage. Taken together, we propose that tetrachromacy in fish has evolved to enhance the reconstruction of complex colour-signals in shallow aquatic environments. Of course, shallow-water fish might possess less than four cone classes; however, this would come with the inevitable loss in accuracy of signal reconstruction.

Concepts: Retina, Tetrachromacy, Light, Cone cell, Eye, Color vision, Color blindness, Photoreceptor cell


Infantile nystagmus is commonly associated with afferent abnormalities that can be detected using a range of investigative modalities. Optical coherence tomography allows high-resolution in vivo imaging of the retina. Recent studies have shown characteristic foveal abnormalities in patients with albinism, PAX6 mutations, and isolated foveal hypoplasia. Arrested development of the fovea leads to foveal hypoplasia, which causes reduction in visual acuity. Previous studies have shown correlations between visual acuity and the degree of foveal hypoplasia. Furthermore, in achromatopsia a characteristic lesion has been described that is associated with cone photoreceptor degeneration. Patients with achromatopsia also have foveal hypoplasia, however with atypical features. The signs of photoreceptor degeneration were progressive, which suggests that gene therapy is likely to be most beneficial if given within the first few years of life. With the advent of high speed and ultrahigh resolution optical coherence tomography it is now possible to document reliably the stages of foveal development and cone photoreceptor degeneration. This will aid clinicians in diagnosis and predicting prognosis in patients with infantile nystagmus.

Concepts: Ophthalmology, Pathologic nystagmus, Optics, Photoreceptor cell, Retina, Eye, Medical terms, Color blindness


Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change (c.35C>G) resulting in a nonsense mutation (p.Ser12(∗)) in PDE6H, encoding the inhibitory γ subunit of the cone photoreceptor cyclic guanosine monophosphate phosphodiesterase. The c.35C>G mutation was present in three individuals from two independent families with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders and demonstrate the importance of the inhibitory γ subunit in cone phototransduction.

Concepts: Achromatopsia, Eye, Cone cell, Visual acuity, Point mutation, Retina, Color blindness, Photoreceptor cell


Most nonprimate mammals possess dichromatic (“red-green color blind”) color vision based on short-wavelength-sensitive (S) and medium/long-wavelength-sensitive (ML) cone photoreceptor classes. However, the neural pathways carrying signals underlying the primitive “blue-yellow” axis of color vision in nonprimate mammals are largely unexplored. Here, we have characterized a population of color opponent (blue-ON) cells in recordings from the dorsal lateral geniculate nucleus of anesthetized cats. We found five points of similarity to previous descriptions of primate blue-ON cells. First, cat blue-ON cells receive ON-type excitation from S-cones, and OFF-type excitation from ML-cones. We found no blue-OFF cells. Second, the S- and ML-cone-driven receptive field regions of cat blue-ON cells are closely matched in size, consistent with specialization for detecting color contrast. Third, the receptive field center diameter of cat blue-ON cells is approximately three times larger than the center diameter of non-color opponent receptive fields at any eccentricity. Fourth, S- and ML-cones contribute weak surround inhibition to cat blue-ON cells. These data show that blue-ON receptive fields in cats are functionally very similar to blue-ON type receptive fields previously described in macaque and marmoset monkeys. Finally, cat blue-ON cells are found in the same layers as W-cells, which are thought to be homologous to the primate koniocellular system. Based on these data, we suggest that cat blue-ON cells are part of a “blue-yellow” color opponent system that is the evolutionary homolog of the blue-ON division of the koniocellular pathway in primates.

Concepts: Cat, Receptive field, Color blindness, Visual perception, Photoreceptor cell, Primate, Visual cortex, Retina


Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax.

Concepts: Primary color, Wavelength, Visible spectrum, Color, Color vision, Color blindness, Cone cell, Photoreceptor cell


Despite lacking genetic evidence of a third cone opsin in the retina of any Australian marsupial, most species tested so far appear to be trichromatic. In the light of this, we have re-examined colour vision of the tammar wallaby which had previously been identified as a dichromat. Three different psychophysical tests, based on an operant conditioning paradigm, were used to confirm that colour perception in the wallaby can be predicted and conclusively explained by the existence of only two cone types. Firstly, colour-mixing experiments revealed a Confusion Point between the three primary colours of a LCD monitor that can be predicted by the cone excitation ratio of the short- and middle-wavelength sensitive cones. Secondly, the wavelength discrimination ability in the wallaby, when tested with monochromatic stimuli, was found to be limited to a narrow range between 440 nm and 500 nm. Lastly, an experiment designed to test the wallaby’s ability to discriminate monochromatic lights from a white light provided clear evidence for a Neutral Point around 485 nm where discrimination consistently failed. Relative colour discrimination seemed clearly preferred but it was possible to train a wallaby to perform absolute colour discriminations. The results confirm the tammar wallaby as a dichromat, and so far the only behaviourally confirmed dichromat among the Australian marsupials.

Concepts: Visible spectrum, Marsupial, Primary color, Photoreceptor cell, Light, Color blindness, Color vision, Color


Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD) simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ) domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.

Concepts: Retina, Visual acuity, Ion channels, Receptor, Channelopathy, Mutation, Protein, Color blindness


Humans identify four ‘unique hues’ - blue, green, yellow and red - that do not appear to contain mixtures of other colours. Unique yellow (UY) is particularly interesting because it is stable across large populations: participants reliably set a monochromatic light to a stereotypical wavelength. Individual variability in the ratio of L- and M-cones in the retina, and effects of ageing, both impact unique green (UG) settings [1,2], but cannot predict the relatively small inter-individual differences in UY [2,3]. The stability of UY may arise because it is set by the environment rather than retinal physiology. Support for this idea comes from studies of long-term, artificial chromatic adaptation [4,5], but there is no evidence for this process in natural settings. Here, we measured 67 participants in York (UK) in both the winter and summer, and found a significant seasonal change in UY settings. In comparison, Rayleigh colour matches that would not be expected to exhibit environmentally driven changes were found to be constant. The seasonal shift in UY settings is consistent with a model that reweights L- and M-cone inputs into a perceptual opponent colour channel after a small, seasonally-driven change in mean L:M cone activity.

Concepts: Green, Red, Cyan, Color blindness, Hue, Primary color, Light, Color