Discover the most talked about and latest scientific content & concepts.

Concept: Colloidal gold


In the quest for producing an effective clinically relevant therapeutic agent, scalability, repeatability, and stability are paramount. In this paper, gold nanoparticles (GNPs) with precisely controlled near infrared (NIR) absorption are synthesized by a single step reaction of HAuCl4 and Na2S2O3, without assistance of additional templates, capping reagents or seeds. The anisotropy in the shape of gold nanoparticles offers high NIR absorption making it therapeutically relevant. The synthesized products consist of GNPs with different shape and size, including small spherical colloid gold particles and non-spherical gold crystals. The NIR absorption wavelengths and particle size increase with increasing molar ratio of HAuCl4/Na2S2O3. Non-spherical gold particles can be further purified and separated by centrifugation to improve the NIR absorbing fraction of particles. In-depth studies reveal that GNPs with good structural and optical stability only form in a certain range of the HAuCl4/Na2S2O3 molar ratio, whereas higher molar ratios result in unstable GNPs, which lose their NIR absorption peak due to decomposition and reassembly via Ostwald ripening. Tuning the optical absorption of the gold nanoparticles in the NIR regime via a robust and repeatable method will improve many applications requiring large quantities of desired NIR absorbing nanoparticles.

Concepts: Nanoparticle, Photon, Electromagnetic radiation, Gold, Sodium, Colloidal gold, Chloroauric acid, Sodium thiosulfate


A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks.

Concepts: Nanoparticle, Nanotechnology, Nanomaterials, Colloid, Silicon, Gold, Colloidal gold, Nanocrystalline silicon


Carbon nanotubes (CNTs) are often used as conductive fillers in composite materials, but electrical conductivity is limited by the maximum filler concentration that is necessary to maintain composite structures. This paper presents further improvement in electrical conductivity by precipitating gold nanoparticles onto CNTs. In our composites, the concentrations of CNTs and poly (vinyl acetate) were respectively 60 and 10 vol%. Four different gold concentrations, 0, 10, 15, or 20 vol% were used to compare the influence of the gold precipitation on electrical conductivity and thermopower of the composites. The remaining portion was occupied by poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), which de-bundled and stabilized CNTs in water during synthesis processes. The concentrations of gold nanoparticles are below the percolation threshold of similar composites. However, with 15-vol% gold, the electrical conductivity of our composites was as high as ∼6×10(5) S/m, which is at least ∼500% higher than those of similar composites as well as orders of magnitude higher than those of other polymer composites containing CNTs and gold particles. According to our analysis with a variable range hopping model, the high conductivity can be attributed to gold doping on CNT networks. Additionally, the electrical properties of composites made of different types of CNTs were also compared.

Concepts: Nanoparticle, Water, Nanomaterials, Gold, Composite material, Colloidal gold, Electrical conductivity, Carbon fiber


Despite the continuing interest in the applications of functionalized nanomaterials, the controlled and reproducible synthesis of many important functionalized nanoparticles (NPs) above the milligram scale continues to be a significant challenge. The synthesis of functionalized NPs in automated reactors provides a viable approach to circumvent some of the shortcomings of traditional nanomaterial batch syntheses, providing superior control over reagent addition, improved reproducibility, the opportunity to interface real-time product monitoring, and viable high-throughput synthetic approach. Here, we demonstrate the construction and operation of a simple millifluidic reactor assembled entirely from commercially available components found in almost any chemical laboratory. This reactor facilitates the aqueous gram-scale synthesis of a variety of functionalized gold nanoparticles, including the synthesis of gold nanospheres with tightly controlled core diameters and gold nanorods with controlled aspect ratios between 1.5 and 4.0. The absolute dimensions (i.e. the transverse diameter) of gold nanorods synthesized within the reactor) can also be tailored to produce different gold nanorod shapes, including “small” gold nanorods and gold nanocubes. In addition, the high-throughput synthesis approach facilitated by the flow reactor easily extends the synthesis of monodisperse functionalized gold nanoparticles to the gram scale. Lastly, we show that the reactor can interface with existing purification and monitoring techniques in order to enable the high-throughput functionalization/purification of gold nanorods and real-time monitoring of gold nanoparticle products for quality control. We anticipate that this millifluidic reactor will provide the blueprint for a versatile and portable approach to the gram-scale synthesis of monodisperse, hydrophilically functionalized metal NPs that can be realized in almost any chemistry research laboratory.

Concepts: Nanoparticle, Chemistry, Nanotechnology, Nanomaterials, Chemical synthesis, Gold, Colloidal gold, Ceramic engineering


Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and much more reactive toward gold compared with most ligands of interest, and as a result will reactively displace the ligands from surface sites thereby enabling their quantification. In this study, we use complementary dimensional and spectroscopic methods to characterize the efficiency of DTT displacement. Thiolated methoxypolyethylene glycol (SH-PEG) and bovine serum albumin (BSA) were chosen as representative ligands. Results clearly show that (1) DTT does not completely displace bound SH-PEG or BSA from AuNPs, and (2) the displacement efficiency is dependent on the binding affinity between the ligands and the AuNP surface. Additionally, the displacement efficiency for conjugated SH-PEG is moderately dependent on the molecular mass (yielding efficiencies ranging from 60 to 80 % measured by ATR-FTIR and ≈90 % by ES-DMA), indicating that the displacement efficiency for SH-PEG is predominantly determined by the S-Au bond. BSA is particularly difficult to displace with DTT (i.e., the displacement efficiency is nearly zero) when it is in the so-called normal form. The displacement efficiency for BSA improves to 80 % when it undergoes a conformational change to the expanded form through a process of pH change or treatment with a surfactant. An analysis of the three-component system (SH-PEG + BSA + AuNP) indicates that the presence of SH-PEG decreases the displacement efficiency for BSA, whereas the displacement efficiency for SH-PEG is less impacted by the presence of BSA.

Concepts: Nanoparticle, Nanotechnology, Nanomaterials, Serum albumin, Gold, Colloidal gold, Bovine serum albumin, Chloroauric acid


Colloidal gold nanoparticles represent technological building blocks which are easy to fabricate while keeping full control of their shape and dimensions. Here, we report on a simple two-step maskless process to assemble gold nanoparticles from a water colloidal solution at specific sites of a silicon surface. First, the silicon substrate covered by native oxide is exposed to a charged particle beam (ions or electrons) and then immersed in a HF-modified solution of colloidal nanoparticles. The irradiation of the native oxide layer by a low-fluence charged particle beam causes changes in the type of surface-terminating groups, while the large fluences induce even more profound modification of surface composition. Hence, by a proper selection of the initial substrate termination, solution pH, and beam fluence, either positive or negative deposition of the colloidal nanoparticles can be achieved.

Concepts: Electron, Electric charge, Nanoparticle, Colloid, Gold, Colloidal gold, Charged particle beam, Particle beam


Molecular imaging techniques based on surface-enhanced Raman scattering (SERS) face a lack of reproducibility and reliability, thus hampering its practical application. Flower-like gold nanoparticles have strong SERS enhancement performance due to having plenty of hot-spots on their surfaces, and this enhancement is not dependent on the aggregation of the particles. These features make this kind of particle an ideal SERS substrate to improve the reproducibility in SERS imaging. Here, the SERS properties of individual flower-like gold nanoparticles are systematically investigated. The measurements reveal that the enhancement of a single gold nanoparticle is independent of the polarization of the excitation laser with an enhancement factor as high as 10(8) . After capping with Raman signal molecules and folic acid, the gold nanoflowers show strong Raman signal in the living cells, excellent targeting properties, and a high signal-to-noise ratio for SERS imaging.

Concepts: Nanoparticle, Particle physics, Scattering, Nanotechnology, Nanomaterials, Gold, Colloidal gold, Raman scattering


Thin porous alumina sheets have been synthesized using a lysine-assisted hydrothermal approach resulting in an extraordinary catalyst support that can stabilize Au nanoparticles at annealing temperatures up to 900 °C. Remarkably, the unique architecture of such an alumina with thin sheets (the average thickness ~15 nm and length 680 nm) and rough surface is beneficial to prevent gold nanoparticles from sintering. HRTEM observations clearly showed that the epitaxial growth between Au nanoparticles and alumina support was due to strong interfacial interactions, further explaining the high sinter-stability of the obtained Au/Al2O3 catalyst. Consequently, despite calcination at 700 oC, the catalyst maintains its gold nanoparticles of size predominantly 20.8 nm. Surprisingly, catalyst annealed at 900 oC retained the highly dispersed small gold nanoparticles. It was also observed that a few gold particles (625 nm) were encapsulated by an alumina layer (thickness less than 1 nm) to minimize the surface energy, revealing a surface restructuring of the gold/support interface. As a typical and size-dependent reaction, CO oxidation is used to evaluate the performance of Au/Al2O3 catalysts. The results obtained demonstrated Au/Al2O3 catalyst calcined at 700 oC exhibited excellent activity with a complete CO conversion at ~30 oC (T100%=30 oC), and even after calcination at 900 °C, the catalyst still achieved its T50% at 158 °C. In sharp contrast, Au catalyst prepared using conventional alumina support shows almost no activity under the same preparation and catalytic test conditions.

Concepts: Nanoparticle, Chemical reaction, Hydrogen, Catalysis, Chemical equilibrium, Adsorption, Gold, Colloidal gold


This review elaborate on modified gold nanoparticulate concept in oncology, provides an overview of the use of gold nanoparticles in cancer treatment and discusses their potential applications and clinical benefits.

Concepts: Nanoparticle, Nanotechnology, Nanomaterials, Gold, Colloidal gold, Chloroauric acid, Cluster, Prospecting


To investigate the influence of gold nanoparticle geometry on the biochemical response of Calu-3 epithelial cells.

Concepts: DNA, Nanoparticle, Epithelium, Nanotechnology, Nanomaterials, Gold, Colloidal gold, Chloroauric acid