SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Colloid

171

The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different intrinsic surface properties.

Concepts: Protein, Metabolism, Lung, Cell biology, Nanotechnology, Colloid, Lipid, Pulmonary surfactant

170

A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks.

Concepts: Nanoparticle, Nanotechnology, Nanomaterials, Colloid, Silicon, Gold, Colloidal gold, Nanocrystalline silicon

167

The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders.

Concepts: Colloid, Skin, Topical, Dermis, Epidermis, Keratin, Stratum corneum, Topical steroid

166

In this work, a steroidal gelator containing an imine bond was synthesized, and its gelation behavior as well as a sensitivity of its gels towards acids was investigated. It was shown that the gels were acid-responsive, and that the gelator molecules could be prepared either by a conventional synthesis or directly in situ during the gel forming process. The gels prepared by both methods were studied and it was found that they had very similar macro- and microscopic properties. Furthermore, the possibility to use the gels as carriers for aromatic drugs such as 5-chloro-8-hydroxyquinoline, pyrazinecarboxamide, and antipyrine was investigated and the prepared two-component gels were studied with regard to their potential applications in drug delivery, particularly in a pH-controlled drug release.

Concepts: Colloid, Drugs, Gel, Gels, Aerogel

32

A method to encapsulate DNA in heat-resistant and inert magnetic particles was developed. An inexpensive synthesis technique based on co-precipitation was utilized to produce Fe2O3 nanoparticles, which were further functionalized with ammonium groups. DNA was adsorbed on this magnetic support and the DNA/magnet nanocluster was surface coated with a dense silica layer by sol-gel chemistry. The materials were further surface modified with hexyltrimethoxysilane to achieve particle dispersibility in hydrophobic liquids. The hydrodynamic particle sizes were evaluated by analytical disc-centrifugation and the magnetic properties were investigated by vibrating sample magnetometry. The obtained nanoengineered encapsulates showed good dispersion abilities in various non-aqueous fluids and did not affect the optical properties of the hydrophobic dispersant when present at concentrations lower than 1000 µg/L. Upon magnetic separation and particle dissolution, the DNA could be recovered unharmed and was analyzed by quantitative real-time PCR and Sanger sequencing. DNA encapsulated within the magnetic particles was stable for 2 years in decalin at room temperature and the stability was further tested at elevated temperatures. The new magnetic DNA/silica encapsulates were utilized to developed a low-cost platform for the tracing/tagging of oils and oil derived products, requiring 1 µg/L = 1 ppb levels of the taggant and allowing quantification of taggant concentration on a logarithmic scale. The procedure was tested for the barcoding of a fuel (gasoline), a cosmetic oil (bergamot oil), and a food grade oil (extra virgin olive oil), being able to verify the authenticity of the products.

Concepts: Polymerase chain reaction, Nanoparticle, Concentration, Magnetism, Sol-gel, Colloid, Liquid, Olive oil

32

Here we show the efficacy of graphene oxide (GO) for rapid removal of some of the most toxic and radioactive long-lived human-made radionuclides from contaminated water, even from acidic solutions (pH < 2). The interaction of GO with actinides including Am(iii), Th(iv), Pu(iv), Np(v), U(vi) and typical fission products Sr(ii), Eu(iii) and Tc(vii) were studied, along with their sorption kinetics. Cation/GO coagulation occurs with the formation of nanoparticle aggregates of GO sheets, facilitating their removal. GO is far more effective in removal of transuranium elements from simulated nuclear waste solutions than other routinely used sorbents such as bentonite clays and activated carbon. These results point toward a simple methodology to mollify the severity of nuclear waste contamination, thereby leading to effective measures for environmental remediation.

Concepts: Carbon dioxide, Nuclear physics, Chemical element, Colloid, Nuclear fission, Activated carbon, Radioactive contamination, Radioactive waste

29

Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the “Cheerios effect.” The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

Concepts: Scientific method, Colloid, Force, Solid, Liquid, Surface tension, Soft matter, Stress

29

In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

Concepts: Quantum mechanics, Physics, Condensed matter physics, Chemistry, Colloid, Force, Phase, Soft matter

29

Abstract Aggregation of metal oxide nanoparticles in aqueous media complicates interpretation of in vitro studies of nanoparticle-cell interactions. We used dynamic light scattering to investigate the aggregation dynamics of iron oxide and zinc oxide nanoparticles. Our results show that iron oxide particles aggregate more readily than zinc oxide particles. Pretreatment with serum stabilises iron oxide and zinc oxide nanoparticles against aggregation. Serum-treated iron oxide is stable only in pure water, while zinc oxide is stable in water or cell culture media. These findings, combined with zeta potential measurements and quantification of proteins adsorbed on particle surface, suggest that serum stabilisation of iron oxide particles occurs primarily through protein adsorption and resulting net surface charge. Zinc oxide stabilisation, however, also involves steric hindrance of particle aggregation. Fluid shear at levels used in flow experiments breaks up iron oxide particle aggregates. These results enhance our understanding of nanoparticle aggregation and its consequences for research on the biological effects of nanomaterials.

Concepts: Oxygen, Ultraviolet, Cell culture, Colloid, Oxides, Titanium dioxide, Zinc oxide, Colloidal chemistry

29

Many colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.6 ± 3.5 nm and a shell thickness of 5.4 ± 0.9 nm are specifically detailed here. The HNP synthesis is proposed to proceed with the formation of alkylammonium-stabilized nano-sized droplets of molten cadmium salt, which then come into contact with dissolved selenium species to form a CdSe shell at the droplet surface. In a reaction-diffusion mechanism similar to the nanoscale Kirkendall effect it is speculated that the cadmium migrates outwardly through this shell to react with more selenium, causing the CdSe shell to thicken. The proposed CdSe HNP structure comprises a polycrystalline CdSe shell coated with a thin layer of amorphous selenium. Photovoltaic device characterization indicates that HNPs have improved electron transport characteristics compared to standard CdSe quantum dots, possibly due to this selenium layer. The HNPs are colloidally stable in organic solvents even though carboxylate, phosphine, and amine ligands are absent; stability is attributed to octadecene-selenide species bound to the particle surface. This scalable synthesis method presents opportunities to generate hollow nanoparticles with increased structural and compositional variety.

Concepts: Nanoparticle, Quantum dot, Colloid, Solvent, Liquid, Cadmium, Solar cell, Solution