SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Codeine

168

This issue of Molecular Pharmacology is dedicated to Dr. Avram Goldstein, the journal’s founding Editor and one of the leaders in the development of modern pharmacology. This chapter focuses on his contributions to the discovery of the dynorphins and evidence that members of this family of opioid peptides are endogenous agonists for the kappa opioid receptor. In his original publication describing the purification and sequencing of dynorphin A, Avram described this peptide as ‘extraordinarily potent’ (‘dyn’ from the Greek, dynamis = power and ‘-orphin’ for endogenous morphine peptide). The name originally referred to its high affinity and great potency in the bioassay that was used to follow its activity during purification, but the name has come to have a second meaning: Studies of its physiological function in brain continue to provide powerful insights to the molecular mechanisms controlling the mood disorders and drug addiction. In the 30 years since its discovery, we have learned that the dynorphin peptides are released in brain during stress exposure. Once released, they activate kappa opioid receptors distributed throughout the brain and spinal cord where they trigger cellular responses resulting in different stress responses: analgesia, dysphoria-like behaviors, anxiety-like responses, and increased addiction behaviors in experimental animals. Avram predicted that a detailed molecular analysis of opiate drug actions would someday lead to better treatments for drug addiction, and he would be gratified to know that subsequent studies enabled by his discovery of the dynorphins resulted in insights that hold great promise for new treatments for addiction and depressive disorders.

Concepts: Endorphin, Heroin, Kappa Opioid receptor, Codeine, Buprenorphine, Opioid receptor, Opioid, Morphine

167

It is well-known that genotypic differences can account for the subject-specific responses to opiate administration. In this regard, the basal activity of the endogenous system (either at the receptor or at the ligand level) can modulate the effects of exogenous agonists as morphine, and vice versa. The μ opioid receptor from zebrafish, dre-oprm1, binds endogenous peptides and morphine with similar affinities. Morphine administration during development altered the expression of the endogenous opioid propeptides proenkephalins and proopiomelanocortin. Treatment with opioid peptides (Met-ENK, MEGY and β-END) modulated dre-oprm1 expression during development. Knocking-down dre-oprm1 gene significantly modified the mRNA expression of the penk and pomc genes, thus indicating that oprm1 is involved in shaping penk and pomc expression. Besides, the absence of a functional oprm1 clearly disrupted the embryonic development, as proliferation was disorganized in the central nervous system of oprm1-morphant embryos: mitotic cells were found widespread through the optic tectum, and not restricted to the proliferative areas of the mid- and hindbrain. TUNEL staining revealed that the number of apoptotic cells in the Central Nervous System (CNS) of morphants was clearly increased at 24 hpf. These findings will help to understand the role of the endogenous opioid system in the CNS development. Our results will also contribute to unravel the complex feedback loops which modulate opioid activity, and which may be involved in establishing a coordinated expression of both receptors and endogenous ligands. Further knowledge of the complex interactions between the opioid system and analgesic drugs will provide insights that may be relevant for analgesic therapy.

Concepts: Oxycodone, Codeine, Hydrocodone, Opioid receptor, Central nervous system, Morphine, Buprenorphine, Opioid

167

CO(2)-laser C-fibre evoked cortical potentials (LCEPs) is a potentially useful animal model for studies of pain mechanisms. A potential confounding factor when assessing analgesic effects of systemically administered drugs using LCEP is sedation. This study aims to clarify: 1) the relation between level of anaesthesia and magnitude of LCEP, 2) the effects of a sedative and an analgesic on LCEP and dominant EEG frequency 3) the effects of a sedative and analgesic on LCEP when dominant EEG frequency is kept stable. LCEP and EEG were recorded in isoflurane/nitrous-oxide anaesthetized rats. Increasing isoflurane level gradually reduced LCEPs and lowered dominant EEG frequencies. Systemic midazolam (10 μmol/kg) profoundly reduced LCEP (19% of control) and lowered dominant EEG frequency. Similarly, morphine 1 and 3 mg/kg reduced LCEP (39%, 12% of control, respectively) and decreased EEG frequency. When keeping the dominant EEG frequency stable, midazolam caused no significant change of LCEP. Under these premises, morphine at 3 mg/kg, but not 1 mg/kg, caused a significant LCEP reduction (26% of control). In conclusion, the present data indicate that the sedative effects should be accounted for when assessing the analgesic effects of drug. Furthermore, it is suggested that LCEP, given that changes in EEG induced by sedation are compensated for, can provide information about the analgesic properties of systemically administrated drugs.

Concepts: Codeine, Somatosensory system, Nociception, Pain, Sedative, Analgesic, Opioid, Morphine

141

Dextromethorphan (3-methoxy-N-methylmorphinan), also known as “DXM” and “the poor man’s PCP,” is a synthetically produced drug that is available in more than 140 over-the-counter cough and cold preparations. Dextromethorphan (DXM) has overtaken codeine as the most widely used cough suppressant due to its availability, efficacy, and safety profile at directed doses. However, DXM is subject to abuse. When consumed at inappropriately high doses (over 1500 mg/day), DXM can induce a state of psychosis characterized by Phencyclidine (PCP)-like psychological symptoms, including delusions, hallucinations, and paranoia. We report a noteworthy case of severe dextromethorphan use disorder with dextromethorphan-induced psychotic disorder in a 40-year-old Caucasian female, whose symptoms remitted only following treatment with a combination of an antipsychotic and mood stabilizer. While some states have begun to limit the quantity of DXM sold or restrict sales to individuals over 18-years of age, there is currently no federal ban or restriction on DXM. Abuse of DXM, a readily available and typically inexpensive agent that is not detected on a standard urine drug screen, may be an under-recognized cause of substance-induced psychosis. It is imperative that clinicians are aware of the potential psychiatric sequelae of recreational DXM use.

Concepts: Cough medicine, Cough, Codeine, Common cold, Bipolar disorder, Psychiatry, Psychosis, Schizophrenia

85

Morphine is an alkaloid from the opium poppy used to treat pain. The potentially lethal side effects of morphine and related opioids-which include fatal respiratory depression-are thought to be mediated by μ-opioid-receptor (μOR) signalling through the β-arrestin pathway or by actions at other receptors. Conversely, G-protein μOR signalling is thought to confer analgesia. Here we computationally dock over 3 million molecules against the μOR structure and identify new scaffolds unrelated to known opioids. Structure-based optimization yields PZM21-a potent Gi activator with exceptional selectivity for μOR and minimal β-arrestin-2 recruitment. Unlike morphine, PZM21 is more efficacious for the affective component of analgesia versus the reflexive component and is devoid of both respiratory depression and morphine-like reinforcing activity in mice at equi-analgesic doses. PZM21 thus serves as both a probe to disentangle μOR signalling and a therapeutic lead that is devoid of many of the side effects of current opioids.

Concepts: Methadone, Buprenorphine, Hydrocodone, Opium, Codeine, Heroin, Opioid, Morphine

83

To prevent pain inhibiting their performance, many athletes ingest over-the-counter (OTC) analgesics before competing. We aimed at defining the use of analgesics and the relation between OTC analgesic use/dose and adverse events (AEs) during and after the race, a relation that has not been investigated to date.

Concepts: Epidemiology, Pain, Clinical trial, Paracetamol, Opioid, Ibuprofen, Codeine

69

To study the association between benzodiazepine prescribing patterns including dose, type, and dosing schedule and the risk of death from drug overdose among US veterans receiving opioid analgesics.

Concepts: Codeine, Benzodiazepine, Naloxone, Barbiturate, Benzodiazepine overdose, Opioid

62

The WHO guidelines on cancer pain management recommend a sequential three-step analgesic ladder. However, conclusive data are lacking as to whether moderate pain should be treated with either step II weak opioids or low-dose step III strong opioids.

Concepts: Hydrocodone, Buprenorphine, Methadone, Heroin, Codeine, Morphine, Pain, Opioid

58

Loperamide is an over-the-counter antidiarrheal with μ-opioid agonist activity. Central nervous system opioid effects are not observed after therapeutic oral dosing because of poor bioavailability and minimal central nervous system penetration. However, central nervous system opioid effects do occur after supratherapeutic oral doses. Recently, oral loperamide abuse as an opioid substitute has been increasing among patients attempting to self-treat their opioid addiction. Ventricular dysrhythmias and prolongation of the QRS duration and QTc interval have been reported after oral loperamide abuse. We describe 2 fatalities in the setting of significantly elevated loperamide concentrations.

Concepts: Addiction, Drug addiction, Morphine, Brain, Codeine, Opioid, Central nervous system, Nervous system

56

Codeine has been prescribed to pediatric patients for many decades as both an analgesic and an antitussive agent. Codeine is a prodrug with little inherent pharmacologic activity and must be metabolized in the liver into morphine, which is responsible for codeine’s analgesic effects. However, there is substantial genetic variability in the activity of the responsible hepatic enzyme, CYP2D6, and, as a consequence, individual patient response to codeine varies from no effect to high sensitivity. Drug surveillance has documented the occurrence of unanticipated respiratory depression and death after receiving codeine in children, many of whom have been shown to be ultrarapid metabolizers. Patients with documented or suspected obstructive sleep apnea appear to be at particular risk because of opioid sensitivity, compounding the danger among rapid metabolizers in this group. Recently, various organizations and regulatory bodies, including the World Health Organization, the US Food and Drug Administration, and the European Medicines Agency, have promulgated stern warnings regarding the occurrence of adverse effects of codeine in children. These and other groups have or are considering a declaration of a contraindication for the use of codeine for children as either an analgesic or an antitussive. Additional clinical research must extend the understanding of the risks and benefits of both opioid and nonopioid alternatives for orally administered, effective agents for acute and chronic pain.

Concepts: Hydrocodone, Sleep apnea, Paracetamol, Pharmacology, Heroin, Opioid, Morphine, Codeine