Discover the most talked about and latest scientific content & concepts.

Concept: Cloning


Somatic cell nuclear transfer (SCNT) is a unique technology that produces cloned animals from single cells. It is desirable from a practical viewpoint that donor cells can be collected noninvasively and used readily for nuclear transfer. The present study was undertaken to determine whether peripheral blood cells freshly collected from living mice could be used for SCNT. We collected a drop of peripheral blood (15-45 µl) from the tail of a donor. A nucleated cell (leukocyte) suspension was prepared by lysing the red blood cells. Following SCNT using randomly selected leukocyte nuclei, cloned offspring were born at a 2.8% birth rate. Fluorescence-activated cell sorting revealed that granulocytes/monocytes and lymphocytes could be roughly distinguished by their sizes, the former being significantly larger. We then cloned putative granulocytes/monocytes and lymphocytes separately, and obtained 2.1% and 1.7% birth rates, respectively (P > 0.05). Because the use of lymphocyte nuclei inevitably results in the birth of offspring with DNA rearrangements, we applied granulocyte/monocyte cloning to two genetically modified strains and two recombinant inbred strains. Normal-looking offspring were obtained from all four strains tested. The present study clearly indicated that genetic copies of mice could be produced using a drop of peripheral blood from living donors. This strategy will be applied to the rescue of infertile founder animals or a “last-of-line” animal possessing invaluable genetic resources.

Concepts: DNA, Gene, Genetics, Cell nucleus, Blood, Red blood cell, Cloning, Somatic cell nuclear transfer


Lentiviral vectors (LVs) are powerful tools for transgene expression in vivo and in vitro. However, the construction of LVs is of low efficiency, due to the large sizes and lack of proper clone sites. Therefore, it is critical to develop efficient strategies for cloning LVs. Here, we reported a combinatorial strategy to efficiently construct LVs using EGFP, hPlk2 wild type (WT) and mutant genes as inserts. Firstly, site-directed mutagenesis (SDM) was performed to create BamH I site for the inserts; secondly, pWPI LV was dephosphorylated after BamH I digestion; finally, the amounts and ratios of the insert and vector DNA were optimized to increase monomeric ligation. Our results showed that the total percentage of positive clones was approximately 48%±7.6%. Using this method, almost all the vectors could be constructed through two or three minipreps. Therefore, our study provided an efficient method for constructing large-size vectors.

Concepts: Gene, Mutation, Viral vector, In vivo, In vitro, Cloning, Construction, Clone


Myostatin (MSTN) has been shown to be a negative regulator of skeletal muscle development and growth. MSTN dysfunction therefore offers a strategy for promoting animal growth performance in livestock production. In this study, we investigated the possibility of using RNAi-based technology to generate transgenic sheep with a double-muscle phenotype. A shRNA expression cassette targeting sheep MSTN was used to generate stable shRNA-expressing fibroblast clones. Transgenic sheep were further produced by somatic cell nuclear transfer (SCNT) technology. Five lambs developed to term and three live lambs were obtained. Integration of shRNA expression cassette in three live lambs was confirmed by PCR. RNase protection assay showed that the shRNAs targeting MSTN were expressed in muscle tissues of three transgenic sheep. MSTN expression was significantly inhibited in muscle tissues of transgenic sheep when compared with control sheep. Moreover, transgenic sheep showed a tendency to faster increase in body weight than control sheep. Histological analysis showed that myofiber diameter of transgenic sheep M17 were bigger than that of control sheep. Our findings demonstrate a promising approach to promoting muscle growth in livestock production.

Concepts: Genetics, Gene expression, Muscular dystrophy, Cloning, Livestock, Muscle hypertrophy, Somatic cell nuclear transfer, Myostatin


In this study, a 107 kDa protease from psychrophilic Janthinobacterium lividum PAMC 26541 was purified by anion exchange chromatography. The specific activity of the purified protease was 264 U/mg, and the overall yield was 12.5%. The J. lividum PAMC 25641 protease showed optimal activity at pH 7.0-7.5 and 40°C. Protease activity was inhibited by PMSF, but not by DTT. Based on the N-terminal sequence of the purified protease, the gene encoding the cold-adapted protease from J. lividum PAMC 25641 was cloned into the pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3) as an intracellular soluble protein.

Concepts: Protein, Cell, Molecular biology, Enzyme, Hydrogen, Escherichia coli, Protease, Cloning


Our recent report detailing the health status of cloned sheep concluded that the animals had aged normally. This is in stark contrast to reports on Dolly (first animal cloned from adult cells) whose diagnoses of osteoarthritis (OA) at 5½ years of age led to considerable scientific concern and media debate over the possibility of early-onset age-related diseases in cloned animals. Our study included four 8-year old ewes derived from the cell line that gave rise to Dolly, yet none of our aged sheep showed clinical signs of OA, and they had radiographic evidence of only mild or, in one case, moderate OA. Given that the only formal record of OA in Dolly is a brief mention of a single joint in a conference abstract, this led us to question whether the original concerns about Dolly’s OA were justified. As none of the original clinical or radiographic records were preserved, we undertook radiographic examination of the skeletons of Dolly and her contemporary clones. We report a prevalence and distribution of radiographic-OA similar to that observed in naturally conceived sheep, and our healthy aged cloned sheep. We conclude that the original concerns that cloning had caused early-onset OA in Dolly were unfounded.

Concepts: Death, The Animals, Ageing, Cloning, Domestic sheep, Human cloning, Dolly, Nuclear transfer


The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7-9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals.

Concepts: Death, Osteoarthritis, Gerontology, Knee, Joint, Ageing, Cloning, Ligament


Animal cloning has gained popularity as a method to produce genetically identical animals or superior animals for research or industrial uses. However, the long-standing question of whether a cloned animal undergoes an accelerated aging process is yet to be answered. As a step towards answering this question, we compared longevity and health of Snuppy, the world’s first cloned dog, and its somatic cell donor, Tai, a male Afghan hound. Briefly, both Snuppy and Tai were generally healthy until both developed cancer to which they succumbed at the ages of 10 and 12 years, respectively. The longevity of both the donor and the cloned dog was close to the median lifespan of Afghan hounds which is reported to be 11.9 years. Here, we report creation of 4 clones using adipose-derived mesenchymal stem cells from Snuppy as donor cells. Clinical and molecular follow-up of these reclones over their lives will provide us with a unique opportunity to study the health and longevity of cloned animals compared with their cell donors.

Concepts: Genetics, Stem cell, Cloning, Hwang Woo-Suk, Dolly, Snuppy, Afghan Hound, Cloned animals


Derivation of patient-specific human pluripotent stem cells via somatic cell nuclear transfer (SCNT) has the potential for applications in a range of therapeutic contexts. However, successful SCNT with human cells has proved challenging to achieve, and thus far has only been reported with fetal or infant somatic cells. In this study, we describe the application of a recently developed methodology for the generation of human ESCs via SCNT using dermal fibroblasts from 35- and 75-year-old males. Our study therefore demonstrates the applicability of SCNT for adult human cells and supports further investigation of SCNT as a strategy for regenerative medicine.

Concepts: Genetics, Developmental biology, Stem cell, Stem cells, Cell biology, Cloning, Somatic cell nuclear transfer, Somatic cell


Previous studies of serial cloning in animals showed a decrease in efficiency over repeated iterations and a failure in all species after a few generations. This limitation led to the suggestion that repeated recloning might be inherently impossible because of the accumulation of lethal genetic or epigenetic abnormalities. However, we have now succeeded in carrying out repeated recloning in the mouse through a somatic cell nuclear transfer method that includes a histone deacetylase inhibitor. The cloning efficiency did not decrease over 25 generations, and, to date, we have obtained more than 500 viable offspring from a single original donor mouse. The reprogramming efficiency also did not increase over repeated rounds of nuclear transfer, and we did not see the accumulation of reprogramming errors or clone-specific abnormalities. Therefore, our results show that repeated iterative recloning is possible and suggest that, with adequately efficient techniques, it may be possible to reclone animals indefinitely.

Concepts: DNA, Gene, Genetics, Histone, Epigenetics, Histone deacetylase, Cloning, Somatic cell nuclear transfer


Cloned embryonic stem cells (ESCs) are the tools used for therapeutic cloning, which is designed to remedy disease, not as a means for reproduction. Thirteen years after the first successful derivation of cloned ESCs in mice, and eleven years after the first application of therapeutic cloning also in mice, these pluripotent cells have now been produced in humans. The work of Tachibana and colleagues (Cell, May 2013) shows that the cytoplasm of the human oocyte, like that of several other mammalian species, is endowed with reprogramming capacity after somatic cell nuclear transfer (SCNT). The developmental rates, up to 60% for blastocyst formation and up to 50% for ESC derivation, are very competitive in comparison with the alternative technology of the induced pluripotent stem cells (iPSCs). What did Tachibana and colleagues do differently from the other investigators whose previous attempts to produce cloned human blastocysts and ESCs were unsuccessful? The authors developed a highly refined method for oocyte enucleation and embryo culture, and meticolously selected the oocytes. What does the achievement of the cloned human ESCs mean for basic science and for biomedicine? The reprogramming factors of the human oocyte can be mined and transferred to other reprogramming systems, such as iPSC. Human iPSC’s reprogramming can now be tested against a natural reference-the human oocyte. The achievement of Tachibana and colleagues is a great leap forward for knowledge. It also raises questions, for instance the extent of potency of cloned human embryos, and some issues that society will likely have to confront, such as the principles that should guide the allocation of human oocytes for reproductive versus non-reproductive purposes.

Concepts: Embryo, Developmental biology, Stem cell, Stem cells, Embryonic stem cell, Induced pluripotent stem cell, Cloning, Somatic cell nuclear transfer