Discover the most talked about and latest scientific content & concepts.

Concept: Climbing


Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an “inching” behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai'i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such comparisons can provide insight into the evolutionary mechanisms facilitating exploitation of extreme habitats.

Concepts: Natural selection, Evolution, Symbiosis, Difference, Behavior, Similarity, Gobiidae, Climbing


Paleoanthropologists have long argued-often contentiously-about the climbing abilities of early hominins and whether a foot adapted to terrestrial bipedalism constrained regular access to trees. However, some modern humans climb tall trees routinely in pursuit of honey, fruit, and game, often without the aid of tools or support systems. Mortality and morbidity associated with facultative arboreality is expected to favor behaviors and anatomies that facilitate safe and efficient climbing. Here we show that Twa hunter-gatherers use extraordinary ankle dorsiflexion (>45°) during climbing, similar to the degree observed in wild chimpanzees. Although we did not detect a skeletal signature of dorsiflexion in museum specimens of climbing hunter-gatherers from the Ituri forest, we did find that climbing by the Twa is associated with longer fibers in the gastrocnemius muscle relative to those of neighboring, nonclimbing agriculturalists. This result suggests that a more excursive calf muscle facilitates climbing with a bipedally adapted ankle and foot by positioning the climber closer to the tree, and it might be among the mechanisms that allow hunter-gatherers to access the canopy safely. Given that we did not find a skeletal correlate for this observed behavior, our results imply that derived aspects of the hominin ankle associated with bipedalism remain compatible with vertical climbing and arboreal resource acquisition. Our findings challenge the persistent arboreal-terrestrial dichotomy that has informed behavioral reconstructions of fossil hominins and highlight the value of using modern humans as models for inferring the limits of hominin arboreality.

Concepts: Human, Hominidae, Chimpanzee, Human evolution, Homininae, Hominid, Hominini, Climbing


BackgroundAs proposed by Darwin, climbers have been assumed to allocate a smaller fraction of biomass to support organs in comparison with self-supporting plants. They have also been hypothesized to possess a set of traits associated with fast growth, resource uptake and high productivity.ScopeIn this review, these hypotheses are evaluated by assembling and synthesizing published and unpublished data sets from across the globe concerning resource allocation, growth rates and traits of leaves, stems and roots of climbers and self-supporting species.ConclusionsThe majority of studies offer little support for the smaller allocation of biomass to stems or greater relative growth rates in climbers; however, these results are based on small sized (<1 kg) plants. Simulations based on allometric biomass equations demonstrate, however, that larger lianas allocate a greater fraction of above-ground biomass to leaves (and therefore less biomass to stems) compared with similar sized trees. A survey of leaf traits of lianas revealed their lower average leaf mass per area (LMA), higher N and P concentration and a slightly higher mass-based photosynthetic rate, as well as a lower concentration of phenolic-based compounds than in woody self-supporting species, consistent with the specialization of lianas towards the fast metabolism/rapid turnover end of the global trait spectra. Liana stems have an efficient hydraulic design and unique mechanical features, while roots appear to penetrate deeper soil levels than in trees and are often able to generate hydraulic pressure. Much remains to be learned, however, about these and other functional specializations of their axial organs and the associated trade-offs. Developmental switches between self-supporting, searcher and climbing shoots within the same individual are a promising field of comparative studies on trait association in lianas. Finally, some of the vast trait variability within lianas may be reduced when species with different climbing mechanisms are considered separately, and when phylogenetic conservatism is accounted for.

Concepts: Photosynthesis, Leaf, Plant morphology, Resource allocation, Climbing


To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.

Concepts: Insect, Animal, Model organism, Drosophila melanogaster, Drosophila, Walking, Locomotion, Climbing


Depression is one of the most common diseases in industrialised nations. Physical activity is regarded as an important part of therapeutic intervention. Rock climbing or bouldering (rock climbing to moderate heights without rope) comprises many aspects that are considered useful, but until now, there has been hardly any research on the effects of a bouldering group intervention on people with depression. The purpose of this controlled pilot study was twofold: first, to develop a manual for an eight-week interventional program that integrates psychotherapeutic interventions in a bouldering group setting and second, to assess the effects of a bouldering intervention on people with depression.

Concepts: Intervention, Psychotherapy, Counseling, Climbing, Bouldering, Rock climbing, Climbing organisations


Rock climbing’s popularity continues to rise, with people of all ages regularly participating in the sport. Climbing literature suggests climbers get injured mostly in their upper extremities. Most studies on climbing injury analysis are conducted retrospectively, with all the inherent problems of a retrospective setup (no exact time collection, biased injury perception, etc). Prospective data are still missing.

Concepts: Injury, Physical trauma, Climbing, Rock climbing, Indoor climbing


Climbing plants require an external support to grow vertically and enhance light acquisition. Vines that find a suitable support have greater performance and fitness than those that remain prostrate. Therefore, the location of a suitable support is a key process in the life history of climbing plants. Numerous studies on climbing plant behaviour have elucidated mechanistic details of support searching and attachment. Much fewer studies have addressed the ecological significance of support finding behaviour and the factors that affect it. Without this knowledge, little progress can be made in the understanding of the evolution of support finding behaviour in climbers. I review studies addressing ecological causes and consequences of support finding and use by climbing plants. I also propose the use of behavioural ecology theoretical frameworks to study climbing plant behaviour. I show how host tree attributes may determine the probability of successful colonization for the different types of climbers, and examine the evidence of environmental and genetic control of circumnutation behaviour and phenotypic responses to support availability. Cases of oriented vine growth towards supports are highlighted. I discuss functional responses of vines to the interplay between herbivory and support availability under different abiotic environments, illustrating with one study case how results comply with a theoretical framework of behavioural ecology originally conceived for animals. I conclude stressing that climbing plants are suitable study subjects for the application of behavioural-ecological theory. Further research under this framework should aim at characterizing the different stages of the support finding process in terms of their fit with the different climbing modes and environmental settings. In particular, cost-benefit analysis of climbing plant behaviour should be helpful to infer the selective pressures that have operated to shape current climber ecological communities.

Concepts: Natural selection, Evolution, Extinction, Kudzu, Climbing, Vine


Climbing or negative geotaxis is an innate behavior of the fruit fly Drosophila melanogaster. There has been considerable interest in using this simple behavior to gain insights into the changes in brain function associated with aging, influence of drugs, mutated genes, and human neurological disorders. At present, most climbing tests are conducted manually and there is a lack of a simple and automatic device for repeatable and quantitative analysis of fly climbing behavior. Here we present an automatic fly climbing system, named the Hillary Climber (after Sir Edmund Hillary), that can replace the human manual tapping of vials with a mechanical tapping mechanism to provide more consistent force and reduce variability between the users and trials. Following tapping the HC records fly climbing, tracks the fly climbing path, and analyzes the velocity of individual flies and the percentage of successful climbers. The system is relatively simple to build, easy to operate, and efficient and reliable for climbing tests.

Concepts: Drosophila melanogaster, Drosophila, Flies, Mountaineering, Manual transmission, Climbing, Mount Everest, Edmund Hillary


Hot aches, also known as the screaming barfies in North America, are a recognised phenomenon amongst winter climbers, assumed to be triggered by the reperfusion of cold peripheries which then rapidly progresses to a systemic vasodilatory syndrome. Symptoms experienced in the hands include pain, numbness and throbbing followed by systemic symptoms such as nausea, irritability, dizziness and in extreme cases a transient loss of vision and hearing. Despite being well known amongst the winter climbing community, there are no publications in the scientific literature characterising the hot aches.

Concepts: United States, Greek loanwords, Symptoms, Neurology, Linguistics, North America, Climbing, Extreme sport


Understandably, most locomotor analyses of bats have focused on flight mechanics and behaviors. However, we investigated nonflight locomotion in an effort to glean deeper insights into the evolutionary history of bats. We used high-speed video (300 Hz) to film and compare walking and climbing mechanics and kinematics between several species of the suborders Megachiroptera (Pteropodidae) versus Microchiroptera (Vespertilionidae and Phyllostomatidae). We found fundamentally distinctive behaviors, functional abilities, and performance outcomes between groups, but nearly homogeneous outcomes within groups. Megachiropterans exhibited climbing techniques and skills not found in microchiropterans and which aligned with other fully arboreal mammals. Megachiropterans climbed readily when placed in a head-up posture on a vertical surface, showed significantly greater ability than microchiropterans to abduct and extend the reach of their limbs, and climbed at a greater pace by using a more aggressive ipsilateral gait, at times being supported by only a single contact point. In addition, megachiropterans showed little ability to employ basic walking mechanics when placed on the ground, also a pattern observed in some highly adapted arboreal mammals. Conversely, microchiropterans resisted climbing vertical surfaces in a head-up posture, showed significantly less extension of their limbs, and employed a less-aggressive, slower contralateral gait with three points of contact. When walking, microchiropterans used the same gait they did when climbing which is representative of basic tetrapod terrestrial mechanics. Curiously, megachiropterans cycled their limbs significantly faster when climbing than when attempting to walk, whereas microchiropterans cycled their limbs at significantly faster rates when walking than when climbing. We contend that nonflight locomotion mechanics give a deep evolutionary view into the ancestral es locomotor platform on which flight was built in each of these groups.

Concepts: Evolution, Bat, Running, Walking, Locomotion, Animal locomotion, Microbat, Climbing