SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Cladocera

166

BACKGROUND: The gene doublesex (dsx) is known as a key factor regulating genetic sex determination in many organisms. We previously identified two dsx genes (DapmaDsx1 and DapmaDsx2) from a freshwater branchiopod crustacean, Daphnia magna, which are expressed in males but not in females. D. magna produces males by parthenogenesis in response to environmental cues (environmental sex determination) and we showed that DapmaDsx1 expression during embryonic stages is responsible for the male trait development. The D. magna dsx genes are thought to have arisen by a cladoceran-specific duplication; therefore, to investigate evolutionary conservation of sex specific expression of dsx genes and to further assess their functions in the environmental sex determination, we searched for dsx homologs in four closely related cladoceran species. RESULTS: We identified homologs of both dsx genes from, D. pulex, D. galeata, and Ceriodaphnia dubia, yet only a single dsx gene was found from Moina macrocopa. The deduced amino acid sequences of all 9 dsx homologs contained the DM and oligomerization domains, which are characteristic for all arthropod DSX family members. Molecular phylogenetic analysis suggested that the dsx gene duplication likely occurred prior to the divergence of these cladoceran species, because that of the giant tiger prawn Penaeus monodon is rooted ancestrally to both DSX1 and DSX2 of cladocerans. Therefore, this result also suggested that M. macrocopa lost dsx2 gene secondarily. Furthermore, all dsx genes identified in this study showed male-biased expression levels, yet only half of the putative 5' upstream regulatory elements are preserved in D. magna and D. pulex. CONCLUSIONS: The all dsx genes of five cladoceran species examined had similar amino acid structure containing highly conserved DM and oligomerization domains, and exhibited sexually dimorphic expression patterns, suggesting that these genes may have similar functions for environmental sex determination in cladocerans.

Concepts: Amino acid, Cladocera, Penaeus monodon, Evolution, Crustacean, Daphnia, Branchiopoda, DNA

164

INTRODUCTION: One of the most interesting riddles within crustaceans is the origin of Cladocera (water fleas). Cladocerans are morphologically diverse and in terms of size and body segmentation differ considerably from other branchiopod taxa (Anostraca, Notostraca, Laevicaudata, Spinicaudata and Cyclestherida). In 1876, the famous zoologist Carl Claus proposed with regard to their origin that cladocerans might have evolved from a precociously maturing larva of a clam shrimp-like ancestor which was able to reproduce at this early stage of development. In order to shed light on this shift in organogenesis and to identify (potential) changes in the chronology of development (heterochrony), we investigated the external and internal development of the ctenopod Penilia avirostris and compared it to development in representatives of Anostraca, Notostraca, Laevicaudata, Spinicaudata and Cyclestherida. The development of the nervous system was investigated using immunohistochemical labeling and confocal microscopy. External morphological development was followed using a scanning electron microscope and confocal microscopy to detect the autofluorescence of the external cuticle. RESULTS: In Anostraca, Notostraca, Laevicaudata and Spinicaudata development is indirect and a free-swimming nauplius hatches from resting eggs. In contrast, development in Cyclestherida and Cladocera, in which non-swimming embryo-like larvae hatch from subitaneous eggs (without a resting phase) is defined herein as pseudo-direct and differs considerably from that of the other groups. Both external and internal development in Anostraca, Notostraca, Laevicaudata and Spinicaudata is directed from anterior to posterior, whereas in Cyclestherida and Cladocera differentiation is more synchronous. CONCLUSIONS: In this study, developmental sequences from representatives of all branchiopod taxa are compared and analyzed using a Parsimov event-pairing approach. The analysis reveals clear evolutionary transformations towards Cladocera and the node of Cladoceromorpha which correspond to distinct heterochronous signals and indicate that the evolution of Cladocera was a stepwise process. A switch from a strategy of indirect development to one of pseudo-direct development was followed by a shift in a number of morphological events to an earlier point in ontogenesis and simultaneously by a reduction in the number of pre-metamorphosis molts. A compression of the larval phase as well as a shortening of the juvenile phase finally leads to a precocious maturation and is considered as a gradual progenetic process.

Concepts: Phyllopoda, Daphnia, Cladocera, Clam shrimp, Larva, Developmental biology, Crustacean, Branchiopoda

160

Within arthropods, several crustacean groups are unique in their early development due to their stereotyped cell division patterns and cell lineages. However, it is still unclear whether these cell division patterns are homologous between the various crustacean groups and whether they could indicate the ground pattern of Tetraconata (Crustacea and Hexapoda). In this study we describe the early development of the raptorial water flea Bythotrephes longimanus as a representative of the Cladocera within branchiopods.

Concepts: Antenna, Insect, Phyllopoda, Daphnia, Cladocera, Branchiopoda, Arthropod, Crustacean

154

The use of ecotoxicological techniques for the evaluation of the quality of limnetic waters allows the early detection of toxic agents that pose risks to human health. In this study Moina micrura (two clones), Daphnia laevis (two clones) and Daphnia similis, a temperate species, were used to evaluate the toxicity of six Microcystis extracts from two Colombian reservoirs. Toxin was detected and quantified by HPLC. Microcystin-LR was found in all extracts with the highest concentrations in one sample from each reservoir (434 μg g(-1) and 538 μg g(-1)). The extracts that had the highest toxin concentration also had the highest toxicities to cladocerans. Measurement of 48-h LC50 showed consistent differences between cladoceran species but not clones, Also, reproduction data in two species were consistent with the MC-LR content of one sample tested, with decreased reproduction and disruption of egg production. However, only some growth results of neonates exposed to extracts were consistent with the acute response. In conclusion, Daphnia species are a good model for monitoring cyanotoxins as they respond in a sensitive way to natural phytoplankton samples containing microcystin-LR.

Concepts: Egg, Toxicology, Crustacean, Toxicity, Human, Daphnia, Branchiopoda, Cladocera

150

Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.

Concepts: Water, Length, Chlorella, Time, Daphnia, Ecology, Cladocera, Branchiopoda

147

Species of the genus Moina Baird (Cladocera: Moinidae) often dominate freshwater crustacean communities in temporary water bodies. Several species of Moina are used as food for fish larvae in aquaculture, as bioindicators in toxicological studies, and as common subjects for physiological studies. The aim of this paper is to estimate biodiversity of Moina in northern Eurasia using the standard DNA barcoding approach based on the cytochrome c oxidase subunit I (COI) gene. We analysed 160 newly obtained and 157 existing COI sequences, and found evidence for 21 phylogroups of Moina, some of which were detected here for the first time. Our study confirmed the opinion that the actual species diversity of cladocerans is several times higher than is presently accepted. Our results also indicated that Moina has the second richest species diversity among the cladoceran genera (with only Daphnia O. F. Mueller having a greater diversity of species). Our study strongly supports division of Moina into two faunistic groups: European-Western Siberian and Eastern Siberian-Far Eastern, with a transitional zone at the Yenisey River basin (Eastern Siberia). Here, we refrain from taxonomic descriptions of new species, as this requires a thorough morphological and taxonomic study for each putative taxon.

Concepts: Biodiversity, Krasnoyarsk, Siberia, Daphnia, Crustacean, Species, Branchiopoda, Cladocera

1

Climate change and water extraction may result in increased exposition of the biota to ultraviolet-B radiation (UVB) in high-altitude Andean lakes. Although exposition to lethal doses in these lakes is unlikely, sub-lethal UVB doses may have strong impacts in key compartments such as zooplankton. Here, we aimed at determining the effect of sub-lethal UVB doses on filtration rates of two cladoceran species (Daphnia pulicaria and Ceriodaphnia dubia). We firstly estimated the Incipient Limiting Concentration (ILC) and the Gut Passage Time (GPT) for both species. Thereafter we exposed clones of each species to four increasing UVB doses (treatments): i) DUV-0 (Control), ii) DUV-1 (0.02 MJ m2), iii) DUV-2 (0.03 MJ m2) and iv) DUV-3 (0.15 MJ m2); and estimated their filtration rates using fluorescent micro-spheres. Our results suggest that increasing sub-lethal doses of UVB radiation may strongly disturb the structure and functioning of high-altitude Andean lakes. Filtration rates of D. pulicaria were not affected by the lowest dose applied (DUV-1), but decreased by 50% in treatments DUV-2 and DUV-3. Filtration rates for C. dubia were reduced by more than 80% in treatments DUV-1 and DUV-2 and 100% of mortality occurred at the highest UVB dose applied (DUV-3).

Concepts: Cladocera, Sun, Fluorescence, Fluorescent lamp, Electromagnetic spectrum, Ultraviolet

1

Although the well-known antibiotic norfloxacin (NOR) is recognized as an important environmental pollutant, little is known about its impacts on ecological processes, particularly on species interactions. In this paper, we quantified Daphnia magna (Crustacea, Cladocera) responses in mortality rate at lethal NOR concentrations (0, 25, 50, 100, 200, 300 and 400 mg L(-1)), and in heartbeat rate, swimming behavior and feeding rate (on the green alga Chlorella pyrenoidosa) at sublethal NOR concentrations (0, 25, 50 and 100 mg L(-1)) to determine the effects of this antibiotic in plankton systems. In 96-h-long lethal experiment, mortality rates of D. magna increased significantly with increasing NOR concentration and exposure time. In sublethal experiments, heartbeat rate decreased, while time ratio of vertical to horizontal swimming (TVH) and the duration of quiescence increased in D. magna individuals exposed to increasing NOR concentrations after 4 and 12 h of exposure. These collectively led to decreases in both average swimming ability and feeding rate, consistent with the positive relationship between average swimming ability and feeding rate. Overall, results indicate that, by affecting zooplankton heartbeat rate and behavior, NOR decreased feeding efficiency of D. magna even at low doses, therefore, it might seriously compromise ecosystem health and function.

Concepts: Green algae, Chlorella pyrenoidosa, Ecology, Cladocera, Daphnia, Mortality rate, Chlorella, Branchiopoda

0

Updated range distributions in lakes and reservoirs of the continental United States are provided for six taxa in the family Bosminidae (Bosmina (Bosmina) cf. longirostris (Müller), Bosmina (Eubosmina) coregoni Baird, Bosmina cf. longispina Leydig, Bosmina (Liederobosmina) cf. tubicen Brehm, Bosmina (Liederobosmina) cf. hagmanni Stingelin, and Bosminopsis deitersi Richard), an ecologically important and taxonomically confusing group. This paper provides updated range distribution and information on the westward expansion of the invasive species Bosmina (Eubosmina) coregoni, which was first established in the Great Lakes in the late 1960’s. Current survey data are compared with previous distribution records and discussed in the context of environmental variables.

Concepts: Crustacean, Ecology, Zebra mussel, Branchiopoda, Invasive species, Cladocera, United States, Great Lakes

0

Herein we describe nine species of Eocyzicus from Australia and re-describe the morphological variability of Eocyzicus parooensis Richter Timms, 2005 and Eocyzicus argillaquus Timms Richter, 2009. All species were previously delimited by molecular phylogenetic analyses and the species descriptions are based on the same individuals. Characters were scored with the aid of the taxonomic software DELTA. The morphological analyses largely corroborated the previously delimited species despite high levels of intraspecific variability that overlapped with interspecific variation in many instances. Morphological species delimitation was generally supported by principal component and canonical variate analyses. Characters best suited for morphological species identification were the numbers of growth lines on the carapace, the number of telsonic spines and the number of setae on the furca.

Concepts: Australia, Evolution, Biological classification, Cladocera, Phylogenetics, Branchiopoda, Species, Crustacean