Discover the most talked about and latest scientific content & concepts.

Concept: Clade


Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid,Idmonarachne brasierigen. et sp. nov. from the Late Carboniferous (Stephanian,ca305-299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian-Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids andI. brasieri While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group’s success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies.

Concepts: Arthropod, Phylogenetics, Clade, Phylum, Arachnid, Spider, Chelicerata, Tarantula


This study reports on a new ceratopsid, Spiclypeus shipporum gen et sp. nov., from the lower Coal Ridge Member of the Judith River Formation in Montana, USA, which dates to ~76 Ma (upper Campanian). The species is distinguished by rugose dorsal contacts on the premaxillae for the nasals, laterally projecting postorbital horncores, fully fused and anteriorly curled P1 and P2 epiparietals, and a posterodorsally projecting P3 epiparietal. The holotype specimen is also notable for its pathological left squamosal and humerus, which show varied signs of osteomyelitis and osteoarthritis. Although the postorbital horncores of Spiclypeus closely resemble those of the contemporaneous ‘Ceratops’, the horncores of both genera are nevertheless indistinguishable from those of some other horned dinosaurs, including Albertaceratops and Kosmoceratops; ‘Ceratops’ is therefore maintained as a nomen dubium. Cladistic analysis recovers Spiclypeus as the sister taxon to the clade Vagaceratops + Kosmoceratops, and appears transitional in the morphology of its epiparietals. The discovery of Spiclypeus adds to the poorly known dinosaur fauna of the Judith River Formation, and suggests faunal turnover within the formation.

Concepts: Cladistics, Clade, Cretaceous, Dinosaur, Taxon, Linnaean taxonomy, Ceratopsidae, Nomen dubium


Palaeomerycids were strange three-horned Eurasian Miocene ruminants known through fossils from Spain to China. We here study their systematics, offering the first cladistic phylogeny of the best-known species of the group, and also reassess their phylogenetic position among ruminants, which is currently disputed. The beautifully preserved remains of a new palaeomerycid from middle Miocene deposits of Spain, Xenokeryx amidalae gen. et sp. nov., helps us to better understand palaeomerycid anatomy, especially that of the nuchal region in the skull, significantly improving our current knowledge on these enigmatic ruminants. Our results show two main lineages of palaeomerycids, one containing the genus Ampelomeryx diagnosed by a characteristic type of cranium / cranial appendages and some dental derived traits, and another one that clusters those forms more closely related to Triceromeryx than to Ampelomeryx, characterized by a more derived dentition and a set of apomorphic cranial features. Xenokeryx branches as a basal offshoot of this clade. Also, we find that Eurasian palaeomerycids are not closely related to North American dromomerycids, thus rejecting the currently more accepted view of palaeomerycids as the Eurasian part of the dromomerycid lineage. Instead of this, palaeomerycids are nested with the African Miocene pecoran Propalaeoryx and with giraffoids. On the other hand, dromomerycids are closely related to cervids. We define a clade Giraffomorpha that includes palaeomerycids and giraffids, and propose an emended diagnosis of the Palaeomerycidae based on cranial and postcranial characters, including several features of the cranium not described so far. We also define the Palaeomerycidae as the least inclusive clade of pecorans containing Triceromeryx and Ampelomeryx. Finally, we reassess the taxonomy of several palaeomerycid taxa.

Concepts: Taxonomy, Phylogenetic nomenclature, Skull, Phylogenetics, Cladistics, Clade, Phylogenetic comparative methods, Palaeomerycidae


The Ginglymodi is one of the most common, though poorly understood groups of neopterygians, which includes gars, macrosemiiforms, and “semionotiforms.” In particular, the phylogenetic relationships between the widely distributed “semionotiforms,” and between them and other ginglymodians have been enigmatic. Here, the phylogenetic relationships between eight of the 11 “semionotiform” genera, five genera of living and fossil gars and three macrosemiid genera, are analysed through cladistic analysis, based on 90 morphological characters and 37 taxa, including 7 out-group taxa. The results of the analysis show that the Ginglymodi includes two main lineages: Lepisosteiformes and †Semionotiformes. The genera †Pliodetes, †Araripelepidotes, †Lepidotes, †Scheenstia, and †Isanichthys are lepisosteiforms, and not semionotiforms, as previously thought, and these taxa extend the stratigraphic range of the lineage leading to gars back up to the Early Jurassic. A monophyletic †Lepidotes is restricted to the Early Jurassic species, whereas the strongly tritoral species previously referred to †Lepidotes are referred to †Scheenstia. Other species previously referred to †Lepidotes represent other genera or new taxa. The macrosemiids are well nested within semionotiforms, together with †Semionotidae, here restricted to †Semionotus, and a new family including †Callipurbeckia n. gen. minor (previously referred to †Lepidotes), †Macrosemimimus, †Tlayuamichin, †Paralepidotus, and †Semiolepis. Due to the numerous taxonomic changes needed according to the phylogenetic analysis, this article also includes formal taxonomic definitions and diagnoses for all generic and higher taxa, which are new or modified. The study of Mesozoic ginglymodians led to confirm Patterson’s observation that these fishes show morphological affinities with both halecomorphs and teleosts. Therefore, the compilation of large data sets including the Mesozoic ginglymodians and the re-evaluation of several hypotheses of homology are essential to test the hypotheses of the Halecostomi vs. the Holostei, which is one of the major topics in the evolution of Mesozoic vertebrates and the origin of modern fish faunas.

Concepts: Evolution, Species, Phylogenetic tree, Phylogenetics, Cladistics, Computational phylogenetics, Clade, Actinopterygii


Since Darwin, biologists have been struck by the extraordinary diversity of teleost fishes, particularly in contrast to their closest “living fossil” holostean relatives. Hypothesized drivers of teleost success include innovations in jaw mechanics, reproductive biology and, particularly at present, genomic architecture, yet all scenarios presuppose enhanced phenotypic diversification in teleosts. We test this key assumption by quantifying evolutionary rate and capacity for innovation in size and shape for the first 160 million y (Permian-Early Cretaceous) of evolution in neopterygian fishes (the more extensive clade containing teleosts and holosteans). We find that early teleosts do not show enhanced phenotypic evolution relative to holosteans. Instead, holostean rates and innovation often match or can even exceed those of stem-, crown-, and total-group teleosts, belying the living fossil reputation of their extant representatives. In addition, we find some evidence for heterogeneity within the teleost lineage. Although stem teleosts excel at discovering new body shapes, early crown-group taxa commonly display higher rates of shape evolution. However, the latter reflects low rates of shape evolution in stem teleosts relative to all other neopterygian taxa, rather than an exceptional feature of early crown teleosts. These results complement those emerging from studies of both extant teleosts as a whole and their sublineages, which generally fail to detect an association between genome duplication and significant shifts in rates of lineage diversification.

Concepts: Evolution, Phylogenetics, Clade, Extinction, Actinopterygii, Teleostei, Neopterygii, Holostei


Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild’s giraffe into the Nubian giraffe, as well as Thornicroft’s giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world’s tallest mammal.

Concepts: Genetics, Africa, Species, Mammal, Clade, Giraffe, Giraffes, Rothschild giraffe


Pelagornithidae is an extinct clade of birds characterized by bizarre tooth-like bony projections of the jaws. Here, the flight capabilities of pelagornithids are explored based on data from a species with the largest reported wingspan among birds. Pelagornis sandersi sp. nov. is represented by a skull and substantial postcranial material. Conservative wingspan estimates (∼6.4 m) exceed theoretical maximums based on extant soaring birds. Modeled flight properties indicate that lift:drag ratios and glide ratios for P. sandersi were near the upper limit observed in extant birds and suggest that pelagornithids were highly efficient gliders, exploiting a long-range soaring ecology.

Concepts: Conservation biology, Evolution, Bird, Clade, Extinction, Tetrapod, Dinosaur, Flying and gliding animals


Hyaenodonta is a diverse clade of carnivorous mammals that were part of terrestrial faunas in the Paleogene of Eurasia and North America, but the oldest record for the group is Afro-Arabian, making the record there vital for understanding the evolution of this wide-spread group. Previous studies show an ancient split between two major clades of hyaenodonts that converged in hypercarnivory: Hyainailourinae and Hyaenodontinae. These clades are each supported by cranial characters. Phylogenetic analyses of hyaenodonts also support the monophyly of Teratodontinae, an Afro-Arabian clade of mesocarnivorous to hypercarnivorous hyaenodonts. Unfortunately, the cranial anatomy of teratodontines is poorly known, and aligning the clade with other lineages has been difficult. Here, a new species of the phylogenetically controversial teratodontine Masrasector is described from Locality 41 (latest Priabonian, late Eocene) from the Fayum Depression, Egypt. The hypodigm includes the most complete remains of a Paleogene teratodontine, including largely complete crania, multiple dentaries, and isolated humeri. Standard and “tip-dating” Bayesian analyses of a character-taxon matrix that samples cranial, postcranial, and dental characters support a monophyletic Masrasector within Teratodontinae, which is consistently placed as a close sister group of Hyainailouridae. The cranial morphology of Masrasector provides new support for an expanded Hyainailouroidea (Teratodontinae + Hyainailouridae), particularly characters of the nuchal crest, palate, and basicranium. A discriminant function analysis was performed using measurements of the distal humerus from a diverse sample of extant carnivorans to infer the locomotor habits of Masrasector. Masrasector was assigned to the “terrestrial” locomotor category, a result consistent with the well-defined medial trochlear ridges, and moderately developed supinator crests of the specimens. Masrasector appears to have been a fast-moving terrestrial form with a diverse diet. These specimens considerably improve our understanding of Teratodontinae, an ancient member of the Afro-Arabian mammalian fauna, and our understanding of hyaenodont diversity before the dispersal of Carnivora to the continent near the end of the Paleogene.

Concepts: Phylogenetic nomenclature, Mammal, Cranial nerves, Phylogenetics, Cladistics, Polyphyly, Clade, Eocene


Palaechthonid plesiadapiforms from the Palaeocene of western North America have long been recognized as among the oldest and most primitive euarchontan mammals, a group that includes extant primates, colugos and treeshrews. Despite their relatively sparse fossil record, palaechthonids have played an important role in discussions surrounding adaptive scenarios for primate origins for nearly a half-century. Likewise, palaechthonids have been considered important for understanding relationships among plesiadapiforms, with members of the group proposed as plausible ancestors of Paromomyidae and Microsyopidae. Here, we describe a dentally associated partial skeleton of Torrejonia wilsoni from the early Palaeocene (approx. 62 Ma) of New Mexico, which is the oldest known plesiadapiform skeleton and the first postcranial elements recovered for a palaechthonid. Results from a cladistic analysis that includes new data from this skeleton suggest that palaechthonids are a paraphyletic group of stem primates, and that T. wilsoni is most closely related to paromomyids. New evidence from the appendicular skeleton of T. wilsoni fails to support an influential hypothesis based on inferences from craniodental morphology that palaechthonids were terrestrial. Instead, the postcranium of T. wilsoni indicates that it was similar to that of all other plesiadapiforms for which skeletons have been recovered in having distinct specializations consistent with arboreality.

Concepts: Mammal, Primate, Phylogenetics, Clade, Plesiadapiformes, Euarchontoglires, Treeshrew, Euarchonta


Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves-a clade that encompasses nearly all living bird species-remains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: >390,000 bases of genomic sequence data from each of 198 species of living birds, representing all major avian lineages, and two crocodilian outgroups. Sequence data were collected using anchored hybrid enrichment, yielding 259 nuclear loci with an average length of 1,523 bases for a total data set of over 7.8 × 10(7) bases. Bayesian and maximum likelihood analyses yielded highly supported and nearly identical phylogenetic trees for all major avian lineages. Five major clades form successive sister groups to the rest of Neoaves: (1) a clade including nightjars, other caprimulgiforms, swifts, and hummingbirds; (2) a clade uniting cuckoos, bustards, and turacos with pigeons, mesites, and sandgrouse; (3) cranes and their relatives; (4) a comprehensive waterbird clade, including all diving, wading, and shorebirds; and (5) a comprehensive landbird clade with the enigmatic hoatzin (Opisthocomus hoazin) as the sister group to the rest. Neither of the two main, recently proposed Neoavian clades-Columbea and Passerea-were supported as monophyletic. The results of our divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous-Palaeogene (K-Pg) mass extinction.

Concepts: Evolution, Bird, Phylogenetic tree, Phylogenetics, Cladistics, Clade, Hoatzin, Turaco