SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Cis-regulatory element

179

Decoding post-transcriptional regulatory programs in RNA is a critical step towards the larger goal of developing predictive dynamical models of cellular behaviour. Despite recent efforts, the vast landscape of RNA regulatory elements remains largely uncharacterized. A long-standing obstacle is the contribution of local RNA secondary structure to the definition of interaction partners in a variety of regulatory contexts, including–but not limited to–transcript stability, alternative splicing and localization. There are many documented instances where the presence of a structural regulatory element dictates alternative splicing patterns (for example, human cardiac troponin T) or affects other aspects of RNA biology. Thus, a full characterization of post-transcriptional regulatory programs requires capturing information provided by both local secondary structures and the underlying sequence. Here we present a computational framework based on context-free grammars and mutual information that systematically explores the immense space of small structural elements and reveals motifs that are significantly informative of genome-wide measurements of RNA behaviour. By applying this framework to genome-wide human mRNA stability data, we reveal eight highly significant elements with substantial structural information, for the strongest of which we show a major role in global mRNA regulation. Through biochemistry, mass spectrometry and in vivo binding studies, we identified human HNRPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1, also known as HNRNPA2B1) as the key regulator that binds this element and stabilizes a large number of its target genes. We created a global post-transcriptional regulatory map based on the identity of the discovered linear and structural cis-regulatory elements, their regulatory interactions and their target pathways. This approach could also be used to reveal the structural elements that modulate other aspects of RNA behaviour.

Concepts: DNA, Gene expression, RNA, Secondary structure, Messenger RNA, Intron, RNA splicing, Cis-regulatory element

10

The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia.

Concepts: DNA, Gene, Genetics, Gene expression, Molecular biology, Enhancer, Snake, Cis-regulatory element

6

RNA regulatory elements (RREs) are an important yet relatively under-explored facet of gene regulation. Deciphering the prevalence and functional impact of this post-transcriptional control layer requires technologies for disrupting RREs without perturbing cellular homeostasis. Here we describe genome-engineering based evaluation of RNA regulatory element activity (GenERA), a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 platform for in situ high-content functional analysis of RREs. We use GenERA to survey the entire regulatory landscape of a 3'UTR, and apply it in a multiplex fashion to analyse combinatorial interactions between sets of miRNA response elements (MREs), providing strong evidence for cooperative activity. We also employ this technology to probe the functionality of an entire MRE network under cellular homeostasis, and show that high-resolution analysis of the GenERA dataset can be used to extract functional features of MREs. This study provides a genome editing-based multiplex strategy for direct functional interrogation of RNA cis-regulatory elements in a native cellular environment.

Concepts: DNA, Gene, Genetics, Gene expression, Mathematics, Organism, RNA, Cis-regulatory element

6

The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected.

Concepts: DNA, Gene, Promoter, Organism, Sequence, Natural number, Geometric progression, Cis-regulatory element

2

Gene regulation relies on the specificity of transcription factor (TF)-DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF-DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements.

Concepts: DNA, Gene, Genetics, Gene expression, Organism, RNA, Regulation, Cis-regulatory element

0

After remaining an orphan for over a decade, the ykkC riboswitch family (ykkC, mini-ykkC, and ykkC-III) was recently characterized as guanidine-specific genetic regulatory elements (guanidine-I, II, and III). They respond to increased levels of intracellular guanidine by turning on genes involved in guanidine export and breakdown. Their existence suggests that regulation of intracellular guanidine levels could be an important piece of bacterial physiology which was not appreciated previously. Structural biologists moved exceptionally fast to reveal the guanidine-sensing mechanisms of these riboswitches at the atomic level. The crystal structures of all three guanidine family members have been determined. They appear to represent three independently evolved RNA sensors, with distinct tertiary folds but surprisingly similar guanidine-binding cores. A few key questions remain to be addressed: It is not known which metabolic pathway(s) may lead to guanidine accumulation and the function of close relatives to the guanidine-I riboswitch that do not respond to guanidine remains unclear. The continued characterization of these and other orphan cis-regulatory elements represents an orthogonal approach to reveal new facets of bacterial physiology. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Riboswitches RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.

Concepts: DNA, Gene, Genetics, Bacteria, Molecular biology, RNA, Structure, Cis-regulatory element

0

Identification and functional characterization of cis-regulatory elements in human PPARD gene.

Concepts: Genetics, Gene expression, Transcription, Cis-regulatory element

0

It has been hypothesized that both the 3'-untranslated region (3'UTR) and the 5'-untranslated region (5'UTR) of the ornithine decarboxylase (ODC) mRNA influence the expression of the ODC protein. Here, we use luciferase expression constructs to examine the influence of both UTRs in keratinocyte derived cell lines. The ODC 5'UTR or 3'UTR was cloned into the pGL3 control vector upstream or downstream of the luciferase reporter gene, respectively, and luciferase activity was measured in both non-tumorigenic and tumorigenic mouse keratinocyte cell lines. Further analysis of the influence of the 3'UTR on luciferase activity was accomplished through site-directed mutagenesis and distal deletion analysis within this region. Insertion of either the 5'UTR or 3'UTR into a luciferase vector resulted in a decrease in luciferase activity when compared to the control vector. Deletion analysis of the 3'UTR revealed a region between bases 1969 and 2141 that was inhibitory, and mutating residues within that region increased luciferase activity. These data suggest that both the 5'UTR and 3'UTR of ODC contain cis-acting regulatory elements that control intracellular ODC protein levels.

Concepts: DNA, Genetics, Gene expression, Transcription, Molecular biology, RNA, Messenger RNA, Cis-regulatory element

0

Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection.

Concepts: DNA, Gene expression, In vivo, In vitro, Regulation, Epinephelus, Orange-spotted grouper, Cis-regulatory element

0

Cell type-specific and housekeeping enhancers and promoters collectively control the transcriptional output of mammalian cells. Recent data clarify how DNA sequence features on the one hand control functional coupling of promoters with selected enhancers, and on the other impart high level of activity to a broad range of regulatory elements.

Concepts: DNA, Protein, Gene, Genetics, Gene expression, Promoter, Adenosine triphosphate, Cis-regulatory element