Discover the most talked about and latest scientific content & concepts.

Concept: Chronic kidney disease


BACKGROUND: Maintenance hemodialysis (HD) patients universally suffer from excess toxin load. Hemodiafiltration (HDF) has shown its potential in better removal of small as well as large sized toxins, but its efficacy is restricted by inter-compartmental clearance. Intra-dialytic exercise on the other hand is also found to be effective for removal of toxins; the augmented removal is apparently obtained by better perfusion of skeletal muscles and decreased inter-compartmental resistance. The aim of this trial is to compare the toxin removal outcome associated with intra-dialytic exercise in HD and with post-dilution HDF.Methods/designThe main hypothesis of this study is that intra-dialytic exercise enhances toxin removal by decreasing the inter-compartmental resistance, a major impediment for toxin removal. To compare the HDF and HD with exercise, the toxin rebound for urea, creatinine, phosphate, and beta2-microglobulin will be calculated after 2 hours of dialysis. Spent dialysate will also be collected to calculate the removed toxin mass. To quantify the decrease in inter-compartmental resistance, the recently developed regional blood flow model will be employed. The study will be single center, randomized, self-control, open-label prospective clinical research where 15 study subjects will undergo three dialysis protocols (a) high flux HD, (b) post-dilution HDF, © high flux HD with exercise. Multiple blood samples during each study session will be collected to estimate the unknown model parameters. DISCUSSION: This will be the first study to investigate the exercise induced physiological change(s) responsible for enhanced toxin removal, and compare the toxin removal outcome both for small and middle sized toxins in HD with exercise and HDF. Successful completion of this clinical research will give important insights into exercise effect on factors responsible for enhanced toxin removal. The knowledge will give confidence for implementing, sustaining, and optimizing the exercise in routine dialysis care. We anticipate that toxin removal outcomes from intra-dialytic exercise session will be comparable to that obtained by standalone HDF. These results will encourage clinicians to combine HDF with intra-dialytic exercise for significantly enhanced toxin removal.Trial number, NCT01674153.

Concepts: Chronic kidney disease, Nephrology, Dialysis, Clinical trial, Effectiveness, Hemodialysis, Renal replacement therapy, Clinical research


BACKGROUND: Fibroblast growth factor 23 (FGF23) is an important hormone in the regulation of phosphate metabolism. It is unclear whether FGF23 is associated with carotid artery calcification (CAAC) in predialysis patients. The present study aimed to clarify the relationship between FGF23 and CAAC in patients with chronic kidney disease (CKD) who were not on dialysis. METHODS: One-hundred ninety-five predialysis CKD patients were enrolled in this cross-sectional study. CAAC was assessed using multidetector computed tomography, and the prevalence of CAAC was examined. Intact FGF23 was measured in each patient. The risk factors for CAAC were evaluated using a logistic regression model. RESULTS: We found CAAC in 66% of the patients. The prevalence of CAAC significantly increased across CKD stages: it was 37% in CKD stages 1–2, 58% in stage 3; 75% in stage 4, and 77% in stage 5 (p < 0.01). In multivariate analysis, smoking, diabetes mellitus and log FGF23 were each identified as risk factors for CAAC. The study population was divided in quartiles of FGF23 levels. Compared with the lowest FGF23 quartile, each subsequent quartile had a progressively higher odds ratio (OR) for CAAC, adjusted for confounders (ORs [95% confidence interval] of 2.34 [0.78 to 7.31], 5.28 [1.56 to 19.5], and 13.6 [2.92 to 74.6] for the second, third, and fourth quartiles, respectively. CONCLUSIONS: The prevalence of CAAC is increased with the decline in the kidney function. FGF23 is independently related to CAAC in patients with CKD who are not on dialysis.

Concepts: Renal failure, Chronic kidney disease, Kidney, Nephrology, Erythropoietin, Epidemiology, Diabetes mellitus, Medical statistics


Vascular access problems are a daily occurrence in hemodialysis units. Loss of patency of the vascular access limits hemodialysis delivery and may result in underdialysis that leads to increased morbidity and mortality. Despite the known superiority of autogenous fistulae over grafts, autogenous fistulae also suffer from frequent development of stenosis and subsequent thrombosis. International guidelines recommend programmes for detection of stenosis and consequent correction in an attempt to reduce the rate of thrombosis. Physical examination of autogenous fistulae has recently been revisited as an important element in the assessment of stenotic lesions. Prospective observational studies have consistently demonstrated that physical examination performed by trained physicians is an accurate method for the diagnosis of fistula stenosis and, therefore, should be part of all surveillance protocols of the vascular access. However, to optimize hemodialysis access surveillance, hemodialysis practitioners may need to improve their skills in performing physical examination. The purpose of this article is to review the basics and drawbacks of physical examination for dialysis arteriovenous fistulae and to provide the reader with its diagnostic accuracy in the detection of arteriovenous fistula dysfunction, based on current published literature.

Concepts: Chronic kidney disease, Dialysis, Hemodialysis, Renal replacement therapy, Arteriovenous fistula, Fistula, Cimino fistula


Home-based renal replacement therapy (RRT) [peritoneal dialysis (PD) and home hemodialysis (HHD)] offers independent quality of life and clinical advantages compared to conventional in-center hemodialysis. However, follow-up may be less complete for home dialysis patients following a change in care settings such as post hospitalization. We aim to implement a Home Dialysis Virtual Ward (HDVW) strategy, which is targeted to minimize gaps of care.

Concepts: Chronic kidney disease, Nephrology, Dialysis, Hemodialysis, Peritoneum, Renal dialysis


Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent genetic cause of renal failure. Here we identify miR-17 as a target for the treatment of ADPKD. We report that miR-17 is induced in kidney cysts of mouse and human ADPKD. Genetic deletion of the miR-17∼92 cluster inhibits cyst proliferation and PKD progression in four orthologous, including two long-lived, mouse models of ADPKD. Anti-miR-17 treatment attenuates cyst growth in short-term and long-term PKD mouse models. miR-17 inhibition also suppresses proliferation and cyst growth of primary ADPKD cysts cultures derived from multiple human donors. Mechanistically, c-Myc upregulates miR-17∼92 in cystic kidneys, which in turn aggravates cyst growth by inhibiting oxidative phosphorylation and stimulating proliferation through direct repression of Pparα. Thus, miR-17 family is a promising drug target for ADPKD, and miR-17-mediated inhibition of mitochondrial metabolism represents a potential new mechanism for ADPKD progression.

Concepts: DNA, Chronic kidney disease, Kidney, Adenosine triphosphate, Mitochondrion, Chromosome, Oxidative phosphorylation, Polycystic kidney disease


Chronic kidney disease (CKD) is a major and increasing constituent of disease burdens worldwide. Early identification of patients at increased risk of developing CKD can guide interventions to slow disease progression, initiate timely referral to appropriate kidney care services, and support targeting of care resources. Risk prediction models can extend laboratory-based CKD screening to earlier stages of disease; however, to date, only a few of them have been externally validated or directly compared outside development populations. Our objective was to validate published CKD prediction models applicable in primary care.

Concepts: Chronic kidney disease, Validation


The use of dipeptidyl peptidase-4 (DPP-4) inhibitors is increasing among renal transplant patients with diabetes. However, the glucose-lowering efficacies of various DPP-4 inhibitors and their effects on blood cyclosporine levels have not been fully investigated. We compared the glucose-lowering efficacies of DPP 4 inhibitors and evaluate their effects on the blood levels of cyclosporine in renal transplant recipients with diabetes.

Concepts: Chronic kidney disease, Kidney, Blood sugar, Organ transplant, Dipeptidyl peptidase-4, Dipeptidyl peptidase-4 inhibitors, Dipeptidyl peptidase-4 inhibitor


Renal fibrosis represents a common pathway leading to progression of chronic kidney disease. Renal interstitial fibrosis is characterized by extensive fibroblast activation and excessive production and deposition of extracellular matrix (ECM), which leads to progressive loss of kidney function. There is no effective therapy available clinically to halt or even reverse renal fibrosis. Although activated fibroblasts/myofibroblasts are responsible for the excessive production and deposition of ECM, their origin remains controversial. Recent evidence suggests that bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. Understanding the molecular signaling mechanisms underlying the recruitment and activation of the bone marrow-derived fibroblast precursors will lead to novel therapy for the treatment of chronic kidney disease. In this review, we summarize recent advances in our understanding of the recruitment and activation of bone marrow-derived fibroblast precursors in the kidney and the development of renal fibrosis and highlights new insights that may lead to novel therapies to prevent or reverse the development of renal fibrosis.

Concepts: Renal failure, Chronic kidney disease, Kidney, Nephrology, Erythropoietin, Collagen, Extracellular matrix, Renal physiology


Iron deficiency, even in the absence of anemia, can be debilitating, and exacerbate any underlying chronic disease, leading to increased morbidity and mortality. Iron deficiency is frequently concomitant with chronic inflammatory disease; however, iron deficiency treatment is often overlooked, partially due to the heterogeneity among clinical practice guidelines. In the absence of consistent guidance across chronic heart failure, chronic kidney disease and inflammatory bowel disease, we provide practical recommendations for iron deficiency to treating physicians: definition, diagnosis, and disease-specific diagnostic algorithms. These recommendations should facilitate appropriate diagnosis and treatment of iron deficiency to improve quality of life and clinical outcomes. This article is protected by copyright. All rights reserved.

Concepts: Immune system, Inflammation, Chronic kidney disease, Medicine, Medical terms, Inflammatory bowel disease, All rights reserved, Copyright


Acute kidney injury (AKI) complicates recovery from cardiac surgery in up to 30 % of patients, injures and impairs the function of the brain, lungs, and gut, and places patients at a 5-fold increased risk of death during hospitalization. Renal ischemia, reperfusion, inflammation, hemolysis, oxidative stress, cholesterol emboli, and toxins contribute to the development and progression of AKI. Preventive strategies are limited, but current evidence supports maintenance of renal perfusion and intravascular volume while avoiding venous congestion, administration of balanced salt as opposed to high-chloride intravenous fluids, and the avoidance or limitation of cardiopulmonary bypass exposure. AKI that requires renal replacement therapy occurs in 2-5 % of patients following cardiac surgery and is associated with 50 % mortality. For those who recover from renal replacement therapy or even mild AKI, progression to chronic kidney disease in the ensuing months and years is more likely than for those who do not develop AKI. Cardiac surgery continues to be a popular clinical model to evaluate novel therapeutics, off-label use of existing medications, and nonpharmacologic treatments for AKI, since cardiac surgery is fairly common, typically elective, provides a relatively standardized insult, and patients remain hospitalized and monitored following surgery. More efficient and time-sensitive methods to diagnose AKI are imperative to reduce this negative outcome. The discovery and validation of renal damage biomarkers should in time supplant creatinine-based criteria for the clinical diagnosis of AKI.

Concepts: Renal failure, Chronic kidney disease, Nephrology, Medicine, Blood, Hospital, Blood vessel, Ischemia