Discover the most talked about and latest scientific content & concepts.

Concept: Chloroplast


Transglutaminases function as biological glues in animal cells, plant cells and microbes. In energy producing organelles such as chloroplasts the presence of transglutaminases was recently confirmed. Furthermore, a plastidial transglutaminase has been cloned from maize and the first plants overexpressing tgz are available (Nicotiana tabacum TGZ OE). Our hypothesis is that the overexpression of plastidal transglutaminase will alter photosynthesis via increased polyamination of the antenna of photosystem II. We have used standard analytical tools to separate the antenna from photosystem II in wild type and modified plants, 6 specific antibodies against LHCbs to confirm their presence and sensitive HPLC method to quantify the polyamination level of these proteins. We report that bound spermidine and spermine were significantly increased (∼80%) in overexpressors. Moreover, we used recent advances in in vivo probing to study simultaneously the proton and electron circuit of thylakoids. Under physiological conditions overexpressors show a 3-fold higher sensitivity of the antenna down regulation loop (qE) to the elicitor (luminal protons) which is estimated as the ΔpH component of thylakoidal proton motive force. In addition, photosystem (hyper-PSIIα) with an exceptionally high antenna (large absorption cross section), accumulate in transglutaminase over expressers doubling the rate constant of light energy utilization (Kα) and promoting thylakoid membrane stacking. Polyamination of antenna proteins is a previously unrecognized mechanism for the modulation of the size (antenna absorption cross section) and sensitivity of photosystem II to down regulation. Future research will reveal which peptides and which residues of the antenna are responsible for such effects.

Concepts: DNA, Photosynthesis, Protein, Cell, Plastid, Eukaryote, Organelle, Chloroplast


New specimens of the kleptoplastidal dinoflagellate Gymnodinium eucyaneum Hu were collected in China. We investigated the systematics of the dinoflagellate and the origin of its endosymbiont based on light morphology and phylogenetic analyses using multiple DNA sequences. Cells were dorsoventrally flattened with a sharply acute hypocone and a hemispherical epicone. The confusion between G. eucyaneum and G. acidotum Nygaard still needs to be resolved. We found that the hypocone was conspicuously larger than the epicone in most G. eucyaneum cells, which differed from G. acidotum, but there were a few cells whose hypocone and epicone were of nearly the same size. In addition, there was only one site difference in the partial nuclear LSU rDNA sequences of a sample from Japan given the name G. acidotum and G. eucyaneum in the present study, which suggest that G. eucyaneum may be a synonym of G. acidotum. Spectroscopic analyses and phylogenetic analyses based on nucleomorph SSU rDNA sequences and chloroplast 23 s rDNA sequences suggested that the endosymbiont of G. eucyaneum was derived from Chroomonas (Cryptophyta), and that it was most closely related to C. coerulea Skuja. Moreover, the newly reported kleptoplastidal dinoflagellates G. myriopyrenoides and G. eucyaneum in our study were very similar, and the taxonomy of kleptoplastidal dinoflagellates was discussed.

Concepts: Algae, DNA, Eukaryote, Organelle, Chloroplast, Endosymbiont, Dinoflagellate, Cryptomonad


Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, 2, and 3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1-80 and 110-145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N-terminus and contains dimerization domains at its C-terminus.

Concepts: DNA, Protein, Amino acid, Acid, Metabolism, Chloroplast, Lipid, Inner membrane


Echinacea is a common botanical used in dietary supplements, primarily to treat upper respiratory tract infections and to support immune function. There are currently thought to be nine species in the genus Echinacea. Due to very low molecular divergence among sister species, traditional DNA barcoding has not been successful for differentiation of Echinacea species. Here, we present the use of full chloroplast genomes to distinguish between all 9 reported species. Total DNA was extracted from specimens stored at the National Museum of Natural History, Smithsonian Institution, which had been collected from the wild with species identification documented by experts in the field. We used Next Generation Sequencing (NGS) and CLC Genomics Workbench to assemble complete chloroplast genomes for all nine species. Full chloroplasts unambiguously differentiated all nine species, compared with the very few single nucleotide polymorphisms (SNPs) available with core DNA barcoding markers. SNPs for any two Echinacea chloroplast genomes ranged from 181 to 910, and provided robust data for unambiguous species delimitation. Implications for DNA-based species identification assays derived from chloroplast genome sequences are discussed in light of product safety, adulteration and quality issues.

Concepts: DNA, Gene, Bioinformatics, Molecular biology, Species, Chloroplast, Respiratory system, Upper respiratory tract infection


Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output.

Concepts: Photosynthesis, Metabolism, Adenosine triphosphate, Enzyme, Organism, Chloroplast, Biochemistry, Metabolic pathway


The machinery that conducts the light-driven reactions of oxygenic photosynthesis is hosted within specialized paired membranes called thylakoids. In higher plants, the thylakoids are segregated into two morphological and functional domains called grana and stroma lamellae. A large fraction of the luminal volume of the granal thylakoids is occupied by the oxygen-evolving complex of photosystem II. Electron microscopy data we obtained on dark- and light-adapted Arabidopsis thylakoids indicate that the granal thylakoid lumen significantly expands in the light. Models generated for the organization of the oxygen-evolving complex within the granal lumen predict that the light-induced expansion greatly alleviates restrictions imposed on protein diffusion in this compartment in the dark. Experiments monitoring the redox kinetics of the luminal electron carrier plastocyanin support this prediction. The impact of the increase in protein mobility within the granal luminal compartment in the light on photosynthetic electron transport rates and processes associated with the repair of photodamaged photosystem II complexes is discussed.

Concepts: Cyanobacteria, Photosynthesis, Chloroplast, Plastocyanin, Chlorophyll, Thylakoid, Light-dependent reactions, ATP synthase


Thylakoid membranes, the universal structure where photosynthesis takes place in all oxygenic photosynthetic organisms from cyanobacteria to higher plants, have a unique lipid composition. They contain a high fraction of 2 uncharged glycolipids, the galactoglycerolipids mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), and an anionic sulfolipid, sulfoquinovosediacylglycerol (SQDG). A remarkable feature of the evolution from cyanobacteria to higher plants is the conservation of MGDG, DGDG, SQDG, and phosphatidylglycerol (PG), the major phospholipid of thylakoids. Using neutron diffraction on reconstituted thylakoid lipid extracts, we observed that the thylakoid lipid mixture self-organizes as a regular stack of bilayers. This natural lipid mixture was shown to switch from hexagonal II toward lamellar phase on hydration. This transition and the observed phase coexistence are modulated by the fine-tuning of the lipid profile, in particular the MGDG/DGDG ratio, and by the hydration. Our analysis highlights the critical role of DGDG as a contributing component to the membrane stacking via hydrogen bonds between polar heads of adjacent bilayers. DGDG interactions balance the repulsive electrostatic contribution of the charged lipids PG and SQDG and allow the persistence of regularly stacked membranes at high hydration. In developmental contexts or in response to environmental variations, these properties can contribute to the highly dynamic flexibility of plastid structure.-Demé, B., Cataye, C., Block, M. A., Maréchal, E., Jouhet, J. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids.

Concepts: Cyanobacteria, Photosynthesis, Chloroplast, Plant, Lipids, Thylakoid, Light-dependent reactions, ATP synthase


Chloroplasts require protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to import thousands of cytoplasmically synthesized preproteins. However, the molecular identity of the TIC translocon remains controversial. Tic20 forms a 1-megadalton complex at the inner membrane and directly interacts with translocating preproteins. We purified the 1-megadalton complex from Arabidopsis, comprising Tic20 and three other essential components, one of which is encoded by the enigmatic open reading frame ycf1 in the chloroplast genome. All four components, together with well-known TOC components, were found stoichiometrically associated with different translocating preproteins. When reconstituted into planar lipid bilayers, the purified complex formed a preprotein-sensitive channel. Thus, this complex constitutes a general TIC translocon.

Concepts: DNA, Protein, Cell membrane, Organelle, Chloroplast, Lipid bilayer, Inner membrane, Open reading frame


Chloroplasts are unique organelles that are responsible for photosynthesis. Although chloroplasts contain their own genome, the majority of chloroplast proteins are encoded by the nuclear genome. These proteins are transported to the chloroplasts after translation in the cytosol. Chloroplasts contain three membrane systems (outer/inner envelope and thylakoid membranes) that subdivide the interior into three soluble compartments known as the intermembrane space, stroma, and thylakoid lumen. Several targeting mechanisms are required to deliver proteins to the correct chloroplast membrane or soluble compartment. These mechanisms have been extensively studied using purified chloroplasts in vitro. Prior to targeting these proteins to the various compartments of the chloroplast, they must be correctly sorted in the cytosol. To date, it is not clear how these proteins are sorted in the cytosol and then targeted to the chloroplasts. Recently, the cytosolic carrier protein AKR2 and its associated cofactor Hsp17.8 for outer envelope membrane proteins of chloroplasts were identified. Additionally, a mechanism for controlling unimported plastid precursors in the cytosol has been discovered. This review will mainly focus on recent findings concerning the possible cytosolic events that occur prior to protein targeting to the chloroplasts. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

Concepts: Cyanobacteria, Photosynthesis, Mitochondrion, Organelle, Ribosome, Chloroplast, Thylakoid, Inner membrane


The maintenance of functional chloroplasts in photosynthetic eukaryotes requires real-time coordination of the nuclear and plastid genomes. Tetrapyrroles play a significant role in plastid-to-nucleus retrograde signaling in plants to ensure that nuclear gene expression is attuned to the needs of the chloroplast. Well-known sites of synthesis of chlorophyll for photosynthesis, plant chloroplasts also export heme and heme-derived linear tetrapyrroles (bilins), two critical metabolites respectively required for essential cellular activities and for light sensing by phytochromes. Here we establish that Chlamydomonas reinhardtii, one of many chlorophyte species that lack phytochromes, can synthesize bilins in both plastid and cytosol compartments. Genetic analyses show that both pathways contribute to iron acquisition from extracellular heme, whereas the plastid-localized pathway is essential for light-dependent greening and phototrophic growth. Our discovery of a bilin-dependent nuclear gene network implicates a widespread use of bilins as retrograde signals in oxygenic photosynthetic species. Our studies also suggest that bilins trigger critical metabolic pathways to detoxify molecular oxygen produced by photosynthesis, thereby permitting survival and phototrophic growth during the light period.

Concepts: DNA, Photosynthesis, Oxygen, Bacteria, Organism, Eukaryote, Chloroplast, Plant