Discover the most talked about and latest scientific content & concepts.

Concept: Chirodropidae


Chironex fleckeri (Australian box jellyfish) stings can cause acute cardiovascular collapse and death. We developed methods to recover venom with high specific activity, and evaluated the effects of both total venom and constituent porins at doses equivalent to lethal envenomation. Marked potassium release occurred within 5 min and hemolysis within 20 min in human red blood cells (RBC) exposed to venom or purified venom porin. Electron microscopy revealed abundant ∼12-nm transmembrane pores in RBC exposed to purified venom porins. C57BL/6 mice injected with venom showed rapid decline in ejection fraction with progression to electromechanical dissociation and electrocardiographic findings consistent with acute hyperkalemia. Recognizing that porin assembly can be inhibited by zinc, we found that zinc gluconate inhibited potassium efflux from RBC exposed to total venom or purified porin, and prolonged survival time in mice following venom injection. These findings suggest that hyperkalemia is the critical event following Chironex fleckeri envenomation and that rapid administration of zinc could be life saving in human sting victims.

Concepts: Blood, Red blood cell, Cnidaria, Potassium chloride, Box jellyfish, Chironex fleckeri, Cubozoa, Chirodropidae


Cnidarian envenomations are the leading cause of severe and lethal human sting injuries from marine life. The total amount of venom discharged into sting-site tissues, sometimes referred to as “venom load”, has been previously shown to correlate with tentacle contact length and sequelae severity. Since <1% of cnidae discharge upon initial tentacle contact, effective and safe removal of adherent tentacles is of paramount importance in the management of life-threatening cubozoan stings. We evaluated whether common rinse solutions or scraping increased venom load as measured in a direct functional assay of venom activity (hemolysis). Scraping significantly increased hemolysis by increasing cnidae discharge. For Alatina alata, increases did not occur if the tentacles were first doused with vinegar or if heat was applied. However, in Chironex fleckeri, vinegar dousing and heat treatment were less effective, and the best outcomes occurred with the use of venom-inhibiting technologies (Sting No More(®) products). Seawater rinsing, considered a "no-harm" alternative, significantly increased venom load. The application of ice severely exacerbated A. alata stings, but had a less pronounced effect on C. fleckeri stings, while heat application markedly reduced hemolysis for both species. Our results do not support scraping or seawater rinsing to remove adherent tentacles.

Concepts: Cnidaria, Jellyfish, Cnidocyte, Box jellyfish, Chironex fleckeri, Chirodropidae


The box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans. It produces potent and rapid-acting venom and its sting causes severe localized and systemic effects that are potentially life-threatening. In this study, a combined transcriptomic and proteomic approach was used to identify C. fleckeri proteins that elicit toxic effects in envenoming.

Concepts: Proteome, Jellyfish, Cnidocyte, Box jellyfish, Chironex fleckeri, Cubozoa, Chirodropidae, Venomous animals


Box jellyfish cause human fatalities and have a life cycle and habit associated with shallow waters (<5 m) in mangrove creeks, coastal beaches, embayments. In north-western Australia, tow video and epibenthic sled surveys discovered large numbers (64 in a 1500 m tow or 0.05 m(-2)) of Chironex sp. very near to the benthos (<50 cm) at depths of 39-56 m. This is the first record of a population of box jellyfish closely associated with the benthos at such depths. Chironex were not widespread, occurring only in 2 of 33 tow videos and 3 of 41 epibenthic sleds spread over 2000 km(2). All Chironex filmed or captured were on low to medium relief reefs with rich filter feeder communities. None were on soft sediment habitat despite these habitats comprising 49% of all sites. The importance of the reef habitat to Chironex remains unclear. Being associated with filter feeder communities might represent a hazard, and other studies have shown C. fleckeri avoid habitats which represent a risk of entanglement of their tentacles. Most of our observations were made during the period of lowest tidal current flow in the morning. This may represent a period favourable for active hunting for prey close to the seabed.

Concepts: Habitat, Jellyfish, Cnidocyte, Box jellyfish, Chironex fleckeri, Medusa, Cubozoa, Chirodropidae