SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Chemical reaction

226

We report the template-free, low-temperature synthesis of a stable, amorphous, and anhydrous magnesium carbonate nanostructure with pore sizes below 6 nm and a specific surface area of ∼ 800 m(2) g(-1), substantially surpassing the surface area of all previously described alkali earth metal carbonates. The moisture sorption of the novel nanostructure is featured by a unique set of properties including an adsorption capacity ∼50% larger than that of the hygroscopic zeolite-Y at low relative humidities and with the ability to retain more than 75% of the adsorbed water when the humidity is decreased from 95% to 5% at room temperature. These properties can be regenerated by heat treatment at temperatures below 100°C.The structure is foreseen to become useful in applications such as humidity control, as industrial adsorbents and filters, in drug delivery and catalysis.

Concepts: Magnesium, Chemical reaction, Solid, Specific surface area, Heat, Surface chemistry, BET theory, Adsorption

177

The enantioselective allylation of ketones is a problem of fundamental importance in asymmetric reaction design, especially given that only a very small number of methods can generate tertiary carbinols. Despite the vast amount of attention that synthetic chemists have given to this problem, success has generally been limited to just a few simple ketone types. A method for the selective allylation of functionally complex ketones would greatly increase the utility of ketone allylation methods in the chemical synthesis of important targets. Here we describe the operationally simple, direct, regioselective and enantioselective allylation of β-diketones. The strong tendency of β-diketones to act as nucleophilic species was overcome by using their enol form to provide the necessary Brønsted-acid activation. This reaction significantly expands the pool of enantiomerically enriched and functionally complex tertiary carbinols that may be easily accessed. It also overturns more than a century of received wisdom regarding the reactivity of β-diketones.

Concepts: Asymmetric synthesis, Keto-enol tautomerism, Carbonyl, Enantiomeric excess, Asymmetric induction, Chemical synthesis, Chemical reaction, Amino acid

173

Ever since the interest in organic environmental contaminants first emerged 50years ago, there has been a need to present discussion of such chemicals and their transformation products using simple abbreviations so as to avoid the repetitive use of long chemical names. As the number of chemicals of concern has increased, the number of abbreviations has also increased dramatically, sometimes resulting in the use of different abbreviations for the same chemical. In this article, we propose abbreviations for flame retardants (FRs) substituted with bromine or chlorine atoms or including a functional group containing phosphorus, i.e. BFRs, CFRs and PFRs, respectively. Due to the large number of halogenated and organophosphorus FRs, it has become increasingly important to develop a strategy for abbreviating the chemical names of FRs. In this paper, a two step procedure is proposed for deriving practical abbreviations (PRABs) for the chemicals discussed. In the first step, structural abbreviations (STABs) are developed using specific STAB criteria based on the FR structure. However, since several of the derived STABs are complicated and long, we propose instead the use of PRABs. These are, commonly, an extract of the most essential part of the STAB, while also considering abbreviations previously used in the literature. We indicate how these can be used to develop an abbreviation that can be generally accepted by scientists and other professionals involved in FR related work. Tables with PRABs and STABs for BFRs, CFRs and PFRs are presented, including CAS (Chemical Abstract Service) numbers, notes of abbreviations that have been used previously, CA (Chemical Abstract) name, common names and trade names, as well as some fundamental physico-chemical constants.

Concepts: Chemical reaction, Fire retardant, Abbreviations, Chlorine, Acronym and initialism, CAS registry number, Chemistry, Abbreviation

173

Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC) after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

Concepts: Chemical reaction, Mesothelioma, Copy number variation, Rat, Chromosome, Oncology, Gene, Cancer

172

In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance.

Concepts: Chromosome, Chemical reaction, Photovoltaics, Titanium dioxide, Dye-sensitized solar cell, Nanowire, Chemical vapor deposition, Solar cell

171

Highly dispersive strontium carbonate (SrCO3) nanostructures with uniform dumbbell, ellipsoid, and rod-like morphologies were synthesized in methanol solution without any additives. These SrCO3 were characterized by X-ray diffraction, field emission scanning electron microscopy, and N2 adsorption-desorption. The results showed that the reaction temperature and the methanol/water ratio had important effects on the morphologies of SrCO3 particles. The dumbbell-like SrCO3 exhibited a Broader-Emmett-Teller surface area of 14.9 m2 g-1 and an average pore size of about 32 nm with narrow pore size distribution. The formation mechanism of the SrCO3 crystal was preliminary presented.

Concepts: Calcium carbonate, Chemical reaction, Strontium, Electron microscope, Electron, Strontianite, X-ray, Scanning electron microscope

168

In this study, we show that the fish Nile tilapia displays an antipredator response to chemical cues present in the blood of conspecifics. This is the first report of alarm response induced by blood-borne chemical cues in fish. There is a body of evidence showing that chemical cues from epidermal ‘club’ cells elicit an alarm reaction in fish. However, the chemical cues of these ‘club’ cells are restricted to certain species of fish. Thus, as a parsimonious explanation, we assume that an alarm response to blood cues is a generalized response among animals because it occurs in mammals, birds and protostomian animals. Moreover, our results suggest that researchers must use caution when studying chemically induced alarm reactions because it is difficult to separate club cell cues from traces of blood.

Concepts: Camouflage, Gene, Organism, Animal, Fish, Cichlid, Tilapia, Chemical reaction

166

Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

Concepts: Chemical reaction, Catalytic converter, Enzyme catalysis, Solid, Ribozyme, Atom, Catalysis, Hydrogen

165

Room temperature operation, low detection limit and fast response time are highly desirable for a wide range of gas sensing applications. However, the available gas sensors suffer mainly from high temperature operation or external stimulation for response/recovery. Here, we report an ultrasensitive-flexible-silver-nanoparticle based nanocomposite resistive sensor for ammonia detection and established the sensing mechanism. We show that the nanocomposite can detect ammonia as low as 500 parts-per-trillion at room temperature in a minute time. Furthermore, the evolution of ammonia from different chemical reactions has been demonstrated using the nanocomposite sensor as an example. Our results demonstrate the proof-of-concept for the new detector to be used in several applications including homeland security, environmental pollution and leak detection in research laboratories and many others.

Concepts: Gas sensors, Ammonia, Hydrogen, Gas leak, Sensor, Nitrogen, Natural gas, Chemical reaction

163

We report a facile and green method to synthesize a new type of catalyst by coating Pd nanoparticles (NPs) on reduced graphene oxide (rGO)-carbon nanotube (CNT) nanocomposite. An rGO-CNT nanocomposite with three-dimensional microstructures was obtained by hydrothermal treatment of an aqueous dispersion of graphene oxide (GO) and CNTs. After the rGO-CNT composites have been dipped in K2PdCl4 solution, the spontaneous redox reaction between the GO-CNT and PdCl4(2-) led to the formation of nanohybrid materials consisting rGO-CNT decorated with 4 nm Pd NPs, which exhibited excellent and stable catalytic activity: the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a catalyst was completed in only 20 s at room temperature, even when the Pd content of the catalyst was 1.12 wt%. This method does not require rigorous conditions or toxic agents and thus is a rapid, efficient, and green approach to the fabrication of highly active catalysts.

Concepts: Catalytic converter, Catalysis, Chemical reaction, Enzyme, Hydrogenation, Hydrogen, Nitrogen, Electrochemistry