Discover the most talked about and latest scientific content & concepts.

Concept: Chemical industry


The Comparative Toxicogenomics Database (CTD) is a public resource that promotes understanding about the effects of environmental chemicals on human health. CTD biocurators read the scientific literature and manually curate a triad of chemical-gene, chemical-disease and gene-disease interactions. Typically, articles for CTD are selected using a chemical-centric approach by querying PubMed to retrieve a corpus containing the chemical of interest. Although this technique ensures adequate coverage of knowledge about the chemical (i.e. data completeness), it does not necessarily reflect the most current state of all toxicological research in the community at large (i.e. data currency). Keeping databases current with the most recent scientific results, as well as providing a rich historical background from legacy articles, is a challenging process. To address this issue of data currency, CTD designed and tested a journal-centric approach of curation to complement our chemical-centric method. We first identified priority journals based on defined criteria. Next, over 7 weeks, three biocurators reviewed 2425 articles from three consecutive years (2009-2011) of three targeted journals. From this corpus, 1252 articles contained relevant data for CTD and 52 752 interactions were manually curated. Here, we describe our journal selection process, two methods of document delivery for the biocurators and the analysis of the resulting curation metrics, including data currency, and both intra-journal and inter-journal comparisons of research topics. Based on our results, we expect that curation by select journals can (i) be easily incorporated into the curation pipeline to complement our chemical-centric approach; (ii) build content more evenly for chemicals, genes and diseases in CTD (rather than biasing data by chemicals-of-interest); (iii) reflect developing areas in environmental health and (iv) improve overall data currency for chemicals, genes and diseases. Database URL:

Concepts: Health, Chemical substance, Toxicology, Chemical industry, Comparative Toxicogenomics Database, Curator, Journal, Toxicogenomics


There are over 7,000 e-cigarette flavors currently marketed. Flavoring chemicals gained notoriety in the early 2000’s when inhalation exposure of the flavoring chemical diacetyl was found to be associated with a disease that became known as “Popcorn Lung.” There has been limited research on flavoring chemicals in e-cigarettes.

Concepts: Chemical substance, Electronic cigarette, Flavor, Chemical industry, Bronchiolitis obliterans, Popcorn, Diacetyl


Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

Concepts: Oxygen, Crystallography, Hydrogen, Nitrogen, Chemical element, Materials science, Silver, Chemical industry


The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.

Concepts: Economics, Chemical element, Battery, Cellulose, Chemical industry, Ton, Metric system, Hemicellulose


Chemical manufacturing is often done at large facilities that require a sizable capital investment and then produce key compounds for a finite period. We present an approach to the manufacturing of fine chemicals and pharmaceuticals in a self-contained plastic reactionware device. The device was designed and constructed by using a chemical to computer-automated design (ChemCAD) approach that enables the translation of traditional bench-scale synthesis into a platform-independent digital code. This in turn guides production of a three-dimensional printed device that encloses the entire synthetic route internally via simple operations. We demonstrate the approach for the γ-aminobutyric acid receptor agonist, (±)-baclofen, establishing a concept that paves the way for the local manufacture of drugs outside of specialist facilities.

Concepts: Pharmacology, Receptor antagonist, Organic chemistry, Serotonin, Chemical compound, Inverse agonist, Manufacturing, Chemical industry


Wikipedia, the world’s largest and most popular encyclopedia is an indispensable source of chemistry information. It contains among others also entries for over 15,000 chemicals including metabolites, drugs, agrochemicals and industrial chemicals. To provide an easy access to this wealth of information we decided to develop a substructure and similarity search tool for chemical structures referenced in Wikipedia.

Concepts: Chemical reaction, Molecule, Chemistry, Nitrogen, Chemical substance, Chemical compound, Chemical structure, Chemical industry


Scientists face growing pressure to move away from using traditional animal toxicity tests to determine whether manufactured chemicals are safe. Numerous ethical, scientific, business, and legislative incentives will help to drive this shift. However, a number of hurdles must be overcome in the coming years before non-animal methods are adopted into widespread practice, particularly from regulatory, scientific, and global perspectives. Several initiatives are nevertheless underway that promise to increase the confidence in newer alternative methods, which will support the move towards a future in which less data from animal tests is required in the assessment of chemical safety.

Concepts: Chemical substance, Law, Nature, Software testing, Chemical industry, System of a Down


Green chemistry, sustainability and eco-efficiency are guiding the development of the next generation of industrial chemical processes. The use of non-edible lignocellulosic biomass as a source of chemicals and fuels has recently raised interest due to the need for an alternative to fossil resources. Valorisation mainly focuses on cellulose, which has been used for various industrial scale applications for decades. However, creating an economically more viable value chain would require the exploitation of the other main components, hemicellulose and lignin. Here, we present a new low melting mixture composition based in boric acid and choline chloride, and demonstrate its efficiency in the fractionation of wood-based biomass for the production of non-condensed lignin, suitable for further use in the search for sustainable industrial applications, and for the selective conversion of hemicelluloses into valuable platform chemicals.

Concepts: Chemistry, Chemical substance, Lignin, Value, Chemical compound, Cellulose, Sustainability, Chemical industry


A series of tubes: The continuous manufacture of a finished drug product starting from chemical intermediates is reported. The continuous pilot-scale plant used a novel route that incorporated many advantages of continuous-flow processes to produce active pharmaceutical ingredients and the drug product in one integrated system.

Concepts: Pharmacology, Product, Chemical reaction, Drug, Pharmaceutical drug, Active ingredient, Manufacturing, Chemical industry


Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

Concepts: Temperature, Inorganic chemistry, X-ray crystallography, Crystallization, Control, Chemical engineering, Chemical industry