Discover the most talked about and latest scientific content & concepts.

Concept: Chemical equilibrium


In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO₂ concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports.

Concepts: Electrochemistry, Concentration, Chemical equilibrium, Oxide, Chlorine, Solution, Parts-per notation, Chlorine dioxide


Background and the purpose of the study: Rizatriptan is used effectively for the treatment of migraine headache. In this study, a simple, rapid and low cost spectrophotometric method based on the ion-pair complexation is proposed for the determination of rizatriptan in raw material and dosage forms. METHODS: The ion-pair complexation using bromocresol green as reagent was performed in a buffer solution and the absorbance was measured by a spectrophotometer. The ion-pair formation conditions were optimized and the accuracy and precision of the method were calculated.Results and major conclusion: Best results were achieved by using 6 ml of the bromocresol green reagent in the presence of phosphate buffer (pH 3.0). The stoichiometry of the resulted complex was 1:1. The within-day and between-day precision values were lower than 2.9 and 1.8 percent for the calibration range of 0.5–50 and 10–100 mug/ml, respectively. The proposed method was successfully used for the determination of rizatriptan in dosage forms without any interference.

Concepts: Spectroscopy, Chemical equilibrium, PH, Phosphate buffered saline, Accuracy and precision, Buffer solution, Equilibrium chemistry, Spectrophotometry


A study was undertaken to determine activity concentrations for (134)Caesium, (137)Caesium and (210)Polonium in New Zealand seafood, and establish if activity concentrations varied with respect to species/ecological niche and coastal region. Thirty seafood samples were obtained from six fishing regions of New Zealand along with a further six samples of two commercially important species (hoki and arrow squid) with well-defined fisheries. (134)Caesium was not detected in any sample. (137)Caesium was detected in 47% of samples, predominantly in pelagic fish species, with most activities at a trace level. Detections of (137)Caesium were evenly distributed across all regions. Activity concentrations were consistent with those expected from the oceanic inventory representing residual fallout from global nuclear testing. (210)Polonium was detected above the minimum detectable concentration in 33 (92%) of the analysed samples. Molluscs displayed significantly elevated activity concentrations relative to all other species groups. No significant regional variation in activity concentrations were determined. Two dose assessment models for high seafood consumers were undertaken. Dose contribution from (137)Caesium was minimal and far below the dose exemption limit of 1 mSv/year. Exposure to (210)Polonium was significant in high seafood consumers at 0.44-0.77 mSv/year (5th-95th percentile). (137)Caesium is concluded to be a valuable sentinel radionuclide for monitoring anthropogenic releases, such as global fallout and reactor releases, in the marine environment. (210)Polonium is of importance as a natural radionuclide sentinel due to its high contribution to dietary committed dose in seafood consumers.

Concepts: Species, Fish, Concentration, Chemical equilibrium, New Zealand, Radioactive contamination, Region, Pelagic fish


This study is dedicated to the environmental monitoring of radionuclides released in the course of the Fukushima nuclear accident. The activity concentrations of β(-) -emitting (90)Sr and β(-)/γ-emitting (134)Cs and (137)Cs from several hot spots in Japan were determined in soil and vegetation samples. The (90)Sr contamination levels of the samples were relatively low and did not exceed the Bq⋅g(-1) range. They were up four orders of magnitude lower than the respective (137)Cs levels. This study, therefore, experimentally confirms previous predictions indicating a low release of (90)Sr from the Fukushima reactors, due to its low volatility. The radiocesium contamination could be clearly attributed to the Fukushima nuclear accident via its activity ratio fingerprint ((134)Cs/(137)Cs). Although the correlation between (90)Sr and (137)Cs is relatively weak, the data set suggests an intrinsic coexistence of both radionuclides in the contaminations caused by the Fukushima nuclear accident. This observation is of great importance not only for remediation campaigns but also for the current food monitoring campaigns, which currently rely on the assumption that the activity concentrations of β(-)-emitting (90)Sr (which is relatively laborious to determine) is not higher than 10% of the level of γ-emitting (137)Cs (which can be measured quickly). This assumption could be confirmed for the samples investigated herein.

Concepts: Chernobyl disaster, Nuclear medicine, Concentration, Chemical equilibrium, HotSpot, Radioactive contamination, Lists of nuclear disasters and radioactive incidents, Assumption of Mary


A chemical mixture that continually absorbs work from its environment may exhibit steady-state chemical concentrations that deviate from their equilibrium values. Such behavior is particularly interesting in a scenario where the environmental work sources are relatively difficult to access, so that only the proper orchestration of many distinct catalytic actors can power the dissipative flux required to maintain a stable, far-from-equilibrium steady state. In this article, we study the dynamics of an in silico chemical network with random connectivity in an environment that makes strong thermodynamic forcing available only to rare combinations of chemical concentrations. We find that the long-time dynamics of such systems are biased toward states that exhibit a fine-tuned extremization of environmental forcing.

Concepts: Energy, Chemical reaction, Chemistry, Chemical equilibrium, Thermodynamics, Systems theory, Steady state, Dynamic equilibrium


Industrially, the artificial fixation of atmospheric nitrogen to ammonia is carried out using the Haber-Bosch process, but this process requires high temperatures and pressures, and consumes more than 1% of the world’s power production. Therefore the search is on for a more environmentally benign process that occurs under milder conditions. Here, we report that a Ru-loaded electride [Ca(24)Al(28)O(64)](4+)(e(-))(4) (Ru/C12A7:e(-)), which has high electron-donating power and chemical stability, works as an efficient catalyst for ammonia synthesis. Highly efficient ammonia synthesis is achieved with a catalytic activity that is an order of magnitude greater than those of other previously reported Ru-loaded catalysts and with almost half the reaction activation energy. Kinetic analysis with infrared spectroscopy reveals that C12A7:e(-) markedly enhances N(2) dissociation on Ru by the back donation of electrons and that the poisoning of ruthenium surfaces by hydrogen adatoms can be suppressed effectively because of the ability of C12A7:e(-) to store hydrogen reversibly.

Concepts: Ammonia, Metabolism, Chemical reaction, Hydrogen, Catalysis, Nitrogen, Haber process, Chemical equilibrium


A novel chelated ruthenium-based metathesis catalyst bearing an N-2,6-diisopropylphenyl group is reported and displays near-perfect selectivity for the Z-olefin (>95%), as well as unparalleled TONs of up to 7400, in a variety of homodimerization and industrially relevant metathesis reactions. This derivative and other new catalytically-active species were synthesized using an improved method employing sodium carboxylates to induce the salt metathesis and C-H activation of these chelated complexes. All of these new ruthenium-based catalysts are highly Z-selective in the homodimerization of terminal olefins.

Concepts: Chemical reaction, Catalysis, Hydrogenation, Chemical equilibrium, Sodium chloride, Olefin metathesis, Richard R. Schrock, Grubbs' catalyst


Novel ruthenium(ii) complexes were obtained as a result of a stoichiometric reaction of Grubbs' benzylidene second generation catalysts with 3-nitropropene. These stable complexes, formally ruthenaisoxazole N-oxide derivatives, display activity in both metathesis and non-metathetic processes such as cycloisomerisation, isomerisation and transfer hydrogenation.

Concepts: Chemical reaction, Hydrogen, Catalysis, Hydrogenation, Chemical equilibrium, Olefin metathesis, Alkene, Richard R. Schrock


Circular dichroism spectra reveal that sodium dodecyl benzene sulfonate (SDBS) at low concentrations can effectively prevent the aggregation of lysozyme molecules, while SDBS at high concentrations can lead to conformational and structural change of the protein. SDBS is able to inhibit the enzymatic activity of lysozyme in a highly efficient dose-dependent manner. The interaction mechanism of SDBS with lysozyme has been investigated by measuring optical spectra. Based on fluorescence and UV-vis spectra, microenvironmental change in and around the active site region induced by SDBS has been revealed and explained. Two-dimensional FTIR spectra have been analyzed to identify the secondary structures and residues of lysozyme, which have a preferential interaction with SDBS. Hydroxypropyl β-cyclodextrin (HP-β-CD) was used to detach SDBS from the inactivated enzyme, and complete recovery of enzymatic activity was achieved. Thus, the enzymatic activity of lysozyme can be regulated by SDBS and HP-β-CD.

Concepts: Protein, Metabolism, Enzyme, Catalysis, Chemical equilibrium, Enzyme inhibitor, Circular dichroism, Active site


Elicitation of plant in vitro cultures represents a biotechnological tool to improve the production of secondary metabolites. In this study, the effect of AgNO3 and CdCl2 on the sanguinarine production by the suspension culture of Eschscholtzia californica CHAM. was investigated. Elicitors were added to the cultures at the 14th day of subcultivation and their effect on the sanguinarine production was evaluated after a 48 h exposure. AgNO3 at the concentration of 0.075 mmol.l-1 and CdCl2 at the concentration of 4 mmol.l-1 induced a ca. 5.2- and 5.6-multiple increase in sanguinarine synthesis, respectively. This amount represents probably the maximal production, because a further increase in the elicitors concentrations did not increase sanguinarine production. Both abiotic elicitors induced a polyphenol oxidase specific activity increase. Polyphenol oxidase is probably involved in the biosynthesis of sanguinarine at the level of dopamine formation. Dopamine is a precursor of (S)-norcoclaurine, the first intermediate with the benzylisoquinoline structure. Keywords: Eschscholtzia californica CHAM. suspension cultures abiotic elicitation sanguinarine polyphenol oxidase.

Concepts: Metabolism, Concentration, Chemical equilibrium, Culture, In vitro, Solution, Polyphenol, Polyphenol oxidase