Discover the most talked about and latest scientific content & concepts.

Concept: Cheirogaleidae


BACKGROUND: Hematologic and biochemical data are needed to characterize the health status of animal populations over time to determine the habitat quality and captivity conditions. Blood components and the chemical entities that they transport change predominantly with sex and age. The aim of this study was to utilize blood chemistry monitoring to establish the reference levels in a small prosimian primate, the Grey Mouse Lemur (Microcebus murinus). METHOD: In the captive colony, mouse lemurs may live 10-12 years, and three age groups for both males and females were studied: young (1-3 years), middle-aged (4-5 years) and old (6-10 years). Blood biochemical markers were measured using the VetScan Comprehensive Diagnostic Profile. Because many life history traits of this primate are highly dependent on the photoperiod (body mass and reproduction), the effect of season was also assessed. RESULTS: The main effect of age was observed in blood markers of renal functions such as creatinine, which was higher among females. Additionally, blood urea nitrogen significantly increased with age and is potentially linked to chronic renal insufficiency, which has been described in captive mouse lemurs. The results demonstrated significant effects related to season, especially in blood protein levels and glucose rates; these effects were observed regardless of gender or age and were likely due to seasonal variations in food intake, which is very marked in this species. CONCLUSION: These results were highly similar with those obtained in other primate species and can serve as references for future research of the Grey Mouse Lemur.

Concepts: Prosimian, Cheirogaleidae, Primate, Renal failure, Gray Mouse Lemur, Lemur, Mouse lemur


Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation.

Concepts: Hibernation, Cheirogaleidae, Colugo, Lemur, Fat-tailed Dwarf Lemur, Mammal, Primate, Bat


Glucocorticoid hormones are known to play a key role in mediating a cascade of physiological responses to social and ecological stressors and can therefore influence animals' behaviour and ultimately fitness. Yet, how glucocorticoid levels are associated with reproductive success or survival in a natural setting has received little empirical attention so far. Here, we examined links between survival and levels of glucocorticoid in a small, short-lived primate, the grey mouse lemur (Microcebus murinus), using for the first time an indicator of long-term stress load (hair cortisol concentration). Using a capture-mark-recapture modelling approach, we assessed the effect of stress on survival in a broad context (semi-annual rates), but also under a specific period of high energetic demands during the reproductive season. We further assessed the power of other commonly used health indicators (body condition and parasitism) in predicting survival outcomes relative to the effect of long-term stress.

Concepts: Lemur, Cheirogaleidae, Gray Mouse Lemur, Mouse lemur


Longitudinal sampling for intestinal microbiota in wild animals is difficult, leading to a lack of information on bacterial dynamics occurring in nature. We studied how the composition of microbiota communities changed temporally in free-ranging small primates, rufous mouse lemurs (Microcebus rufus). We marked and recaptured mouse lemurs during their mating season in Ranomafana National Park in southeastern mountainous rainforests of Madagascar for two years and determined fecal microbiota of these mouse lemurs with MiSeq sequencing. We collected 160 fecal samples from 71 animals and had two or more samples from 39 individuals. We found small, but statistically significant, effects of site and age in microbiota richness and diversity, and sex, year and site in microbiota composition, whilst the within-year temporal trends were less clear. Within-host microbiota showed pervasive variation in intestinal bacterial community composition, especially during the second study year. We hypothesize that the biological properties of mouse lemurs, including, small body size and fast metabolism may contribute to the temporal intra-individual level variation, something that should be testable with more extensive sampling regimes.

Concepts: Cheirogaleidae, Evolution, Metabolism, Gut flora, Mouse lemur, Bacteria, Lemur, Primate


Testis size is an indirect indicator of a species' mating system, along with sexual size and canine dimorphism, existence and usage of mating and advertisement calls as well as the spatial distribution of males and females ready to mate in solitary species. Upon its recent discovery, the northern giant mouse lemur Mirza zaza was suggested to have a polygynandrous mating system and to exhibit seasonal breeding. We tested these predictions in a field study in Sahamalaza National Park, NW Madagascar.

Concepts: Sex, Northern Giant Mouse Lemur, Lemur, Reproduction, Cheirogaleidae, Human


Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=-0.62) or septum (rs=-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.

Concepts: Brain, Cheirogaleidae, Cognition, Gray Mouse Lemur, Primate, Blood sugar, Lemur, Mouse lemur


LEMURS (INFRAORDER: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55-60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs), to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus) was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction) verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the exclusion of Eulemur and Varecia, with Varecia the sister lineage to the other three genera.

Concepts: Cladistics, Phylogenetic tree, Cheirogaleidae, Phylogenetics, Lemuridae, Strepsirrhini, Primate, Lemur


Lemurpediculus madagascariensis sp. nov. (Phthiraptera: Anoplura: Polyplacidae) is described from the Gray Mouse lemur, Microcebus murinus (J. F. Miller) (Primates: Cheirogaleidae), from Ankarafantsika National Park, Madagascar. Lemurs were trapped using Sherman Live Traps and visually inspected for lice, which were preserved in 90% ethanol. Adults of both sexes and the third-instar nymph of the new species are illustrated and distinguished from the four previously known species of Lemurpediculus: L. verruculosus (Ward); L. petterorum Paulian; L. claytoni Durden, Blanco, and Seabolt; and L. robbinsi Durden, Blanco, and Seabolt. It is not known if the new species of louse is a vector of any pathogens or parasites.

Concepts: Strepsirrhini, Primate, Golden-brown Mouse Lemur, Brown Mouse Lemur, Gray Mouse Lemur, Cheirogaleidae, Mouse lemur, Lemur


The development of novel therapeutics to prevent cognitive decline of Alzheimer’s disease (AD) is facing paramount difficulties since the translational efficacy of rodent models did not resulted in better clinical results. Currently approved treatments, including the acetylcholinesterase inhibitor donepezil (DON) and the N-methyl-D-aspartate antagonist memantine (MEM) provide marginal therapeutic benefits to AD patients. There is an urgent need to develop a predictive animal model that is phylogenetically proximal to humans to achieve better translation. The non-human primate grey mouse lemur (Microcebus murinus) is increasingly used in aging research, but there is no published results related to the impact of known pharmacological treatments on age-related cognitive impairment observed in this primate. In the present study we investigated the effects of DON and MEM on sleep-deprivation (SD)-induced memory impairment in young and aged male mouse lemurs. In particular, spatial memory impairment was evaluated using a circular platform task after 8 h of total SD. Acute single doses of DON or MEM (0.1 and 1mg/kg) or vehicle were administered intraperitoneally 3 h before the cognitive task during the SD procedure. Results indicated that both doses of DON were able to prevent the SD-induced deficits in retrieval of spatial memory as compared to vehicle-treated animals, both in young and aged animals Likewise, MEM show a similar profile at 1 mg/kg but not at 0.1mg/kg. Taken together, these results indicate that two widely used drugs for mitigating cognitive deficits in AD were partially effective in sleep deprived mouse lemurs, which further support the translational potential of this animal model. Our findings demonstrate the utility of this primate model for further testing cognitive enhancing drugs in development for AD or other neuropsychiatric conditions.

Concepts: Cheirogaleidae, Primate, Gray Mouse Lemur, Mouse lemur, Lemur, Alzheimer's disease


Listeriosis is a zoonotic infection with the gram positive, facultative intracellular bacterium Listeria (L.) monocytogenes. Infections mainly occur in ruminants, but also in other species, including humans. Case fatality rate usually is high. The incidence of listeriosis in captive non-human primates is very low. We report the first spontaneous, fatal, and likely food-born outbreak of listeriosis in a population of captive grey mouse lemurs (Microcebus murinus). Conspicuously, none of the closely related Goodman’s mouse lemurs (Microcebus lehilahytsara) in the same facility were affected.

Concepts: Bacteria, Mouse lemurs, Human, Gray Mouse Lemur, Cheirogaleidae, Primate, Lemur, Mouse lemur