SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Canidae

251

Development of assisted reproductive technologies (ART) in the dog has resisted progress for decades, due to their unique reproductive physiology. This lack of progress is remarkable given the critical role ART could play in conserving endangered canid species or eradicating heritable disease through gene-editing technologies-an approach that would also advance the dog as a biomedical model. Over 350 heritable disorders/traits in dogs are homologous with human conditions, almost twice the number of any other species. Here we report the first live births from in vitro fertilized embryos in the dog. Adding to the practical significance, these embryos had also been cryopreserved. Changes in handling of both gametes enabled this progress. The medium previously used to capacitate sperm excluded magnesium because it delayed spontaneous acrosome exocytosis. We found that magnesium significantly enhanced sperm hyperactivation and ability to undergo physiologically-induced acrosome exocytosis, two functions essential to fertilize an egg. Unlike other mammals, dogs ovulate a primary oocyte, which reaches metaphase II on Days 4-5 after the luteinizing hormone (LH) surge. We found that only on Day 6 are oocytes consistently able to be fertilized. In vitro fertilization of Day 6 oocytes with sperm capacitated in medium supplemented with magnesium resulted in high rates of embryo development (78.8%, n = 146). Intra-oviductal transfer of nineteen cryopreserved, in vitro fertilization (IVF)-derived embryos resulted in seven live, healthy puppies. Development of IVF enables modern genetic approaches to be applied more efficiently in dogs, and for gamete rescue to conserve endangered canid species.

Concepts: Reproduction, Spermatozoon, In vitro fertilisation, Meiosis, Ovulation, Zygote, Dog, Canidae

204

Reproduction is a risky affair; a lifespan cost of maintaining reproductive capability, and of reproduction itself, has been demonstrated in a wide range of animal species. However, little is understood about the mechanisms underlying this relationship. Most cost-of-reproduction studies simply ask how reproduction influences age at death, but are blind to the subjects' actual causes of death. Lifespan is a composite variable of myriad causes of death and it has not been clear whether the consequences of reproduction or of reproductive capability influence all causes of death equally. To address this gap in understanding, we compared causes of death among over 40,000 sterilized and reproductively intact domestic dogs, Canis lupus familiaris. We found that sterilization was strongly associated with an increase in lifespan, and while it decreased risk of death from some causes, such as infectious disease, it actually increased risk of death from others, such as cancer. These findings suggest that to understand how reproduction affects lifespan, a shift in research focus is needed. Beyond the impact of reproduction on when individuals die, we must investigate its impact on why individuals die, and subsequently must identify the mechanisms by which these causes of death are influenced by the physiology associated with reproductive capability. Such an approach may also clarify the effects of reproduction on lifespan in people.

Concepts: Infectious disease, Life, Understanding, Dog, Canidae, Gray Wolf, Coyote, Canis

203

WE INVESTIGATED THE PRESENCE OF A KEY FEATURE OF HUMAN WORD COMPREHENSION IN A FIVE YEAR OLD BORDER COLLIE: the generalization of a word referring to an object to other objects of the same shape, also known as shape bias. Our first experiment confirmed a solid history of word learning in the dog, thus making it possible for certain object features to have become central in his word comprehension. Using an experimental paradigm originally employed to establish shape bias in children and human adults we taught the dog arbitrary object names (e.g. dax) for novel objects. Two experiments showed that when briefly familiarized with word-object mappings the dog did not generalize object names to object shape but to object size. A fourth experiment showed that when familiarized with a word-object mapping for a longer period of time the dog tended to generalize the word to objects with the same texture. These results show that the dog tested did not display human-like word comprehension, but word generalization and word reference development of a qualitatively different nature compared to humans. We conclude that a shape bias for word generalization in humans is due to the distinct evolutionary history of the human sensory system for object identification and that more research is necessary to confirm qualitative differences in word generalization between humans and dogs.

Concepts: Science, Experiment, Dog, Apex predator, Dog breed, Canidae, Gray Wolf, Canis

193

To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.

Concepts: Gene, Genetics, Evolution, Dog, Canidae, Gray Wolf, Coyote, Canis

185

Reputation formation is a key component in the social interactions of many animal species. An evaluation of reputation is drawn from two principal sources: direct experience of an individual and indirect experience from observing that individual interacting with a third party. In the current study we investigated whether dogs use direct and/or indirect experience to choose between two human interactants. In the first experiment, subjects had direct interaction either with a “nice” human (who played with, talked to and stroked the dog) or with an “ignoring” experimenter who ignored the dog completely. Results showed that the dogs stayed longer close to the “nice” human. In a second experiment the dogs observed a “nice” or “ignoring” human interacting with another dog. This indirect experience, however, did not lead to a preference between the two humans. These results suggest that the dogs in our study evaluated humans solely on the basis of direct experience.

Concepts: Species, Philosophy of science, Dog, Apex predator, Canidae, Gray Wolf, Canis, Subspecies of Canis lupus

168

BACKGROUND: A multi-faceted approach was used to investigate the wintertime ecophysiology and behavioral patterns of the raccoon dog, Nyctereutes procyonoides, a suitable model for winter sleep studies. By utilizing GPS tracking, activity sensors, body temperature (Tb) recordings, change-point analysis (CPA), home range, habitat and dietary analyses, as well as fatty acid signatures (FAS), the impact of the species on wintertime food webs was assessed. The timing of passive bouts was determined with multiple methods and compared to Tb data analyzed by CPA. RESULTS: Raccoon dogs displayed wintertime mobility, and the home range sizes determined by GPS were similar or larger than previous estimates by radio tracking. The preferred habitats were gardens, shores, deciduous forests, and sparsely forested areas. Fields had close to neutral preference; roads and railroads were utilized as travel routes. Raccoon dogs participated actively in the food web and gained benefit from human activity. Mammals, plants, birds, and discarded fish comprised the most important dietary classes, and the consumption of fish could be detected in FAS. Ambient temperature was an important external factor influencing Tb and activity. The timing of passive periods approximated by behavioral data and by CPA shared 91% similarity. CONCLUSIONS: Passive periods can be determined with CPA from Tb recordings without the previously used time-consuming and expensive methods. It would be possible to recruit more animals by using the simple methods of data loggers and ear tags. Hunting could be used as a tool to return the ear-tagged individuals allowing the economical extension of follow-up studies. The Tb and CPA methods could be applied to other northern carnivores.

Concepts: Sleep, Canidae, Procyon, Nyctereutes, Raccoon Dog, Japanese Raccoon Dog, Sean John, Canines

167

Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches) and landscape (amount of suitable habitat surrounding of focal patches) factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides) in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3-797.8 ha) as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans.

Concepts: Conservation biology, Hunting, Canidae, Procyon, Nyctereutes, Raccoon Dog, Japanese Raccoon Dog, Sean John

90

The origin of domestic dogs remains controversial, with genetic data indicating a separation between modern dogs and wolves in the Late Pleistocene. However, only a few dog-like fossils are found prior to the Last Glacial Maximum, and it is widely accepted that the dog domestication predates the beginning of agriculture about 10,000 years ago. In order to evaluate the genetic relationship of one of the oldest dogs, we have isolated ancient DNA from the recently described putative 33,000-year old Pleistocene dog from Altai and analysed 413 nucleotides of the mitochondrial control region. Our analyses reveal that the unique haplotype of the Altai dog is more closely related to modern dogs and prehistoric New World canids than it is to contemporary wolves. Further genetic analyses of ancient canids may reveal a more exact date and centre of domestication.

Concepts: DNA, Dog, Canidae, Pleistocene, Fox, Gray Wolf, Coyote, Canis

78

The geographic and temporal origins of the domestic dog remain controversial, as genetic data suggest a domestication process in East Asia beginning 15,000 years ago, whereas the oldest doglike fossils are found in Europe and Siberia and date to >30,000 years ago. We analyzed the mitochondrial genomes of 18 prehistoric canids from Eurasia and the New World, along with a comprehensive panel of modern dogs and wolves. The mitochondrial genomes of all modern dogs are phylogenetically most closely related to either ancient or modern canids of Europe. Molecular dating suggests an onset of domestication there 18,800 to 32,100 years ago. These findings imply that domestic dogs are the culmination of a process that initiated with European hunter-gatherers and the canids with whom they interacted.

Concepts: Europe, Asia, Dog, Canidae, Fox, Gray Wolf, Coyote, Canis

68

The domestication of dogs was an important episode in the development of human civilization. The precise timing and location of this event is debated and little is known about the genetic changes that accompanied the transformation of ancient wolves into domestic dogs. Here we conduct whole-genome resequencing of dogs and wolves to identify 3.8 million genetic variants used to identify 36 genomic regions that probably represent targets for selection during dog domestication. Nineteen of these regions contain genes important in brain function, eight of which belong to nervous system development pathways and potentially underlie behavioural changes central to dog domestication. Ten genes with key roles in starch digestion and fat metabolism also show signals of selection. We identify candidate mutations in key genes and provide functional support for an increased starch digestion in dogs relative to wolves. Our results indicate that novel adaptations allowing the early ancestors of modern dogs to thrive on a diet rich in starch, relative to the carnivorous diet of wolves, constituted a crucial step in the early domestication of dogs.

Concepts: Genetics, Natural selection, Nutrition, Dog, Dogs, Canidae, Gray Wolf, Carnivore