SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Cancer

1131

Background Although the rising pandemic of obesity has received major attention in many countries, the effects of this attention on trends and the disease burden of obesity remain uncertain. Methods We analyzed data from 68.5 million persons to assess the trends in the prevalence of overweight and obesity among children and adults between 1980 and 2015. Using the Global Burden of Disease study data and methods, we also quantified the burden of disease related to high body-mass index (BMI), according to age, sex, cause, and BMI in 195 countries between 1990 and 2015. Results In 2015, a total of 107.7 million children and 603.7 million adults were obese. Since 1980, the prevalence of obesity has doubled in more than 70 countries and has continuously increased in most other countries. Although the prevalence of obesity among children has been lower than that among adults, the rate of increase in childhood obesity in many countries has been greater than the rate of increase in adult obesity. High BMI accounted for 4.0 million deaths globally, nearly 40% of which occurred in persons who were not obese. More than two thirds of deaths related to high BMI were due to cardiovascular disease. The disease burden related to high BMI has increased since 1990; however, the rate of this increase has been attenuated owing to decreases in underlying rates of death from cardiovascular disease. Conclusions The rapid increase in the prevalence and disease burden of elevated BMI highlights the need for continued focus on surveillance of BMI and identification, implementation, and evaluation of evidence-based interventions to address this problem. (Funded by the Bill and Melinda Gates Foundation.).

Concepts: Cancer, Nutrition, Obesity, Overweight, Body mass index, Body shape, Bariatrics, Bill & Melinda Gates Foundation

900

Background The comparative effectiveness of treatments for prostate cancer that is detected by prostate-specific antigen (PSA) testing remains uncertain. Methods We compared active monitoring, radical prostatectomy, and external-beam radiotherapy for the treatment of clinically localized prostate cancer. Between 1999 and 2009, a total of 82,429 men 50 to 69 years of age received a PSA test; 2664 received a diagnosis of localized prostate cancer, and 1643 agreed to undergo randomization to active monitoring (545 men), surgery (553), or radiotherapy (545). The primary outcome was prostate-cancer mortality at a median of 10 years of follow-up. Secondary outcomes included the rates of disease progression, metastases, and all-cause deaths. Results There were 17 prostate-cancer-specific deaths overall: 8 in the active-monitoring group (1.5 deaths per 1000 person-years; 95% confidence interval [CI], 0.7 to 3.0), 5 in the surgery group (0.9 per 1000 person-years; 95% CI, 0.4 to 2.2), and 4 in the radiotherapy group (0.7 per 1000 person-years; 95% CI, 0.3 to 2.0); the difference among the groups was not significant (P=0.48 for the overall comparison). In addition, no significant difference was seen among the groups in the number of deaths from any cause (169 deaths overall; P=0.87 for the comparison among the three groups). Metastases developed in more men in the active-monitoring group (33 men; 6.3 events per 1000 person-years; 95% CI, 4.5 to 8.8) than in the surgery group (13 men; 2.4 per 1000 person-years; 95% CI, 1.4 to 4.2) or the radiotherapy group (16 men; 3.0 per 1000 person-years; 95% CI, 1.9 to 4.9) (P=0.004 for the overall comparison). Higher rates of disease progression were seen in the active-monitoring group (112 men; 22.9 events per 1000 person-years; 95% CI, 19.0 to 27.5) than in the surgery group (46 men; 8.9 events per 1000 person-years; 95% CI, 6.7 to 11.9) or the radiotherapy group (46 men; 9.0 events per 1000 person-years; 95% CI, 6.7 to 12.0) (P<0.001 for the overall comparison). Conclusions At a median of 10 years, prostate-cancer-specific mortality was low irrespective of the treatment assigned, with no significant difference among treatments. Surgery and radiotherapy were associated with lower incidences of disease progression and metastases than was active monitoring. (Funded by the National Institute for Health Research; Current Controlled Trials number, ISRCTN20141297 ; ClinicalTrials.gov number, NCT02044172 .).

Concepts: Cancer, Metastasis, Prostate cancer, Urology, Radiation therapy, Screening, Benign prostatic hyperplasia, Prostate-specific antigen

597

Colorectal cancers are a leading cause of cancer mortality, and their primary prevention by diet is highly desirable. The relationship of vegetarian dietary patterns to colorectal cancer risk is not well established.

Concepts: Cancer, Oncology, Death, Obesity, Colorectal cancer

546

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2016, 1,685,210 new cancer cases and 595,690 cancer deaths are projected to occur in the United States. Overall cancer incidence trends (13 oldest SEER registries) are stable in women, but declining by 3.1% per year in men (from 2009-2012), much of which is because of recent rapid declines in prostate cancer diagnoses. The cancer death rate has dropped by 23% since 1991, translating to more than 1.7 million deaths averted through 2012. Despite this progress, death rates are increasing for cancers of the liver, pancreas, and uterine corpus, and cancer is now the leading cause of death in 21 states, primarily due to exceptionally large reductions in death from heart disease. Among children and adolescents (aged birth-19 years), brain cancer has surpassed leukemia as the leading cause of cancer death because of the dramatic therapeutic advances against leukemia. Accelerating progress against cancer requires both increased national investment in cancer research and the application of existing cancer control knowledge across all segments of the population. CA Cancer J Clin 2016. © 2016 American Cancer Society.

Concepts: Epidemiology, Cancer, Death, Senescence, Mortality rate, Medical statistics, Demography, American Cancer Society

538

Poor lifestyle behaviors are leading causes of preventable diseases globally. Added sugars contribute to a diet that is energy dense but nutrient poor and increase risk of developing obesity, cardiovascular disease, hypertension, obesity-related cancers, and dental caries.

Concepts: Cancer, Disease, Genetic disorder, Nutrition, Obesity, Stroke, Dental caries, Sucrose

532

With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China’s massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations. CA Cancer J Clin 2016. © 2016 American Cancer Society.

Concepts: Epidemiology, Cancer, Disease, Oncology, Lung cancer, Demography, Population, American Cancer Society

531

Objective To determine the availability of data on overall survival and quality of life benefits of cancer drugs approved in Europe.Design Retrospective cohort study.Setting Publicly accessible regulatory and scientific reports on cancer approvals by the European Medicines Agency (EMA) from 2009 to 2013.Main outcome measures Pivotal and postmarketing trials of cancer drugs according to their design features (randomisation, crossover, blinding), comparators, and endpoints. Availability and magnitude of benefit on overall survival or quality of life determined at time of approval and after market entry. Validated European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) used to assess the clinical value of the reported gains in published studies of cancer drugs.Results From 2009 to 2013, the EMA approved the use of 48 cancer drugs for 68 indications. Of these, eight indications (12%) were approved on the basis of a single arm study. At the time of market approval, there was significant prolongation of survival in 24 of the 68 (35%). The magnitude of the benefit on overall survival ranged from 1.0 to 5.8 months (median 2.7 months). At the time of market approval, there was an improvement in quality of life in seven of 68 indications (10%). Out of 44 indications for which there was no evidence of a survival gain at the time of market authorisation, in the subsequent postmarketing period there was evidence for extension of life in three (7%) and reported benefit on quality of life in five (11%). Of the 68 cancer indications with EMA approval, and with a median of 5.4 years' follow-up (minimum 3.3 years, maximum 8.1 years), only 35 (51%) had shown a significant improvement in survival or quality of life, while 33 (49%) remained uncertain. Of 23 indications associated with a survival benefit that could be scored with the ESMO-MCBS tool, the benefit was judged to be clinically meaningful in less than half (11/23, 48%).Conclusions This systematic evaluation of oncology approvals by the EMA in 2009-13 shows that most drugs entered the market without evidence of benefit on survival or quality of life. At a minimum of 3.3 years after market entry, there was still no conclusive evidence that these drugs either extended or improved life for most cancer indications. When there were survival gains over existing treatment options or placebo, they were often marginal.

Concepts: Pharmacology, Cohort study, Clinical trial, Cancer, Oncology, Evaluation, Chemotherapy, Palliative care

491

Objective To evaluate the strength and validity of the evidence for the association between adiposity and risk of developing or dying from cancer.Design Umbrella review of systematic reviews and meta-analyses.Data sources PubMed, Embase, Cochrane Database of Systematic Reviews, and manual screening of retrieved references.Eligibility criteria Systematic reviews or meta-analyses of observational studies that evaluated the association between indices of adiposity and risk of developing or dying from cancer.Data synthesis Primary analysis focused on cohort studies exploring associations for continuous measures of adiposity. The evidence was graded into strong, highly suggestive, suggestive, or weak after applying criteria that included the statistical significance of the random effects summary estimate and of the largest study in a meta-analysis, the number of cancer cases, heterogeneity between studies, 95% prediction intervals, small study effects, excess significance bias, and sensitivity analysis with credibility ceilings.Results 204 meta-analyses investigated associations between seven indices of adiposity and developing or dying from 36 primary cancers and their subtypes. Of the 95 meta-analyses that included cohort studies and used a continuous scale to measure adiposity, only 12 (13%) associations for nine cancers were supported by strong evidence. An increase in body mass index was associated with a higher risk of developing oesophageal adenocarcinoma; colon and rectal cancer in men; biliary tract system and pancreatic cancer; endometrial cancer in premenopausal women; kidney cancer; and multiple myeloma. Weight gain and waist to hip circumference ratio were associated with higher risks of postmenopausal breast cancer in women who have never used hormone replacement therapy and endometrial cancer, respectively. The increase in the risk of developing cancer for every 5 kg/m(2) increase in body mass index ranged from 9% (relative risk 1.09, 95% confidence interval 1.06 to 1.13) for rectal cancer among men to 56% (1.56, 1.34 to 1.81) for biliary tract system cancer. The risk of postmenopausal breast cancer among women who have never used HRT increased by 11% for each 5 kg of weight gain in adulthood (1.11, 1.09 to 1.13), and the risk of endometrial cancer increased by 21% for each 0.1 increase in waist to hip ratio (1.21, 1.13 to 1.29). Five additional associations were supported by strong evidence when categorical measures of adiposity were included: weight gain with colorectal cancer; body mass index with gallbladder, gastric cardia, and ovarian cancer; and multiple myeloma mortality.Conclusions Although the association of adiposity with cancer risk has been extensively studied, associations for only 11 cancers (oesophageal adenocarcinoma, multiple myeloma, and cancers of the gastric cardia, colon, rectum, biliary tract system, pancreas, breast, endometrium, ovary, and kidney) were supported by strong evidence. Other associations could be genuine, but substantial uncertainty remains. Obesity is becoming one of the biggest problems in public health; evidence on the strength of the associated risks may allow finer selection of those at higher risk of cancer, who could be targeted for personalised prevention strategies.

Concepts: Cancer, Breast cancer, Obesity, Menopause, Estrogen, Colorectal cancer, Hereditary nonpolyposis colorectal cancer, BRCA2

475

Background Patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after platinum chemotherapy have a very poor prognosis and limited therapeutic options. Nivolumab, an anti-programmed death 1 (PD-1) monoclonal antibody, was assessed as treatment for this condition. Methods In this randomized, open-label, phase 3 trial, we assigned, in a 2:1 ratio, 361 patients with recurrent squamous-cell carcinoma of the head and neck whose disease had progressed within 6 months after platinum-based chemotherapy to receive nivolumab (at a dose of 3 mg per kilogram of body weight) every 2 weeks or standard, single-agent systemic therapy (methotrexate, docetaxel, or cetuximab). The primary end point was overall survival. Additional end points included progression-free survival, rate of objective response, safety, and patient-reported quality of life. Results The median overall survival was 7.5 months (95% confidence interval [CI], 5.5 to 9.1) in the nivolumab group versus 5.1 months (95% CI, 4.0 to 6.0) in the group that received standard therapy. Overall survival was significantly longer with nivolumab than with standard therapy (hazard ratio for death, 0.70; 97.73% CI, 0.51 to 0.96; P=0.01), and the estimates of the 1-year survival rate were approximately 19 percentage points higher with nivolumab than with standard therapy (36.0% vs. 16.6%). The median progression-free survival was 2.0 months (95% CI, 1.9 to 2.1) with nivolumab versus 2.3 months (95% CI, 1.9 to 3.1) with standard therapy (hazard ratio for disease progression or death, 0.89; 95% CI, 0.70 to 1.13; P=0.32). The rate of progression-free survival at 6 months was 19.7% with nivolumab versus 9.9% with standard therapy. The response rate was 13.3% in the nivolumab group versus 5.8% in the standard-therapy group. Treatment-related adverse events of grade 3 or 4 occurred in 13.1% of the patients in the nivolumab group versus 35.1% of those in the standard-therapy group. Physical, role, and social functioning was stable in the nivolumab group, whereas it was meaningfully worse in the standard-therapy group. Conclusions Among patients with platinum-refractory, recurrent squamous-cell carcinoma of the head and neck, treatment with nivolumab resulted in longer overall survival than treatment with standard, single-agent therapy. (Funded by Bristol-Myers Squibb; CheckMate 141 ClinicalTrials.gov number, NCT02105636 .).

Concepts: Head and neck anatomy, Cancer, Lung cancer, Chemotherapy, Normal distribution, Head and neck cancer, Paclitaxel, Bristol-Myers Squibb

466

Background The goal of screening mammography is to detect small malignant tumors before they grow large enough to cause symptoms. Effective screening should therefore lead to the detection of a greater number of small tumors, followed by fewer large tumors over time. Methods We used data from the Surveillance, Epidemiology, and End Results (SEER) program, 1975 through 2012, to calculate the tumor-size distribution and size-specific incidence of breast cancer among women 40 years of age or older. We then calculated the size-specific cancer case fatality rate for two time periods: a baseline period before the implementation of widespread screening mammography (1975 through 1979) and a period encompassing the most recent years for which 10 years of follow-up data were available (2000 through 2002). Results After the advent of screening mammography, the proportion of detected breast tumors that were small (invasive tumors measuring <2 cm or in situ carcinomas) increased from 36% to 68%; the proportion of detected tumors that were large (invasive tumors measuring ≥2 cm) decreased from 64% to 32%. However, this trend was less the result of a substantial decrease in the incidence of large tumors (with 30 fewer cases of cancer observed per 100,000 women in the period after the advent of screening than in the period before screening) and more the result of a substantial increase in the detection of small tumors (with 162 more cases of cancer observed per 100,000 women). Assuming that the underlying disease burden was stable, only 30 of the 162 additional small tumors per 100,000 women that were diagnosed were expected to progress to become large, which implied that the remaining 132 cases of cancer per 100,000 women were overdiagnosed (i.e., cases of cancer were detected on screening that never would have led to clinical symptoms). The potential of screening to lower breast cancer mortality is reflected in the declining incidence of larger tumors. However, with respect to only these large tumors, the decline in the size-specific case fatality rate suggests that improved treatment was responsible for at least two thirds of the reduction in breast cancer mortality. Conclusions Although the rate of detection of large tumors fell after the introduction of screening mammography, the more favorable size distribution was primarily the result of the additional detection of small tumors. Women were more likely to have breast cancer that was overdiagnosed than to have earlier detection of a tumor that was destined to become large. The reduction in breast cancer mortality after the implementation of screening mammography was predominantly the result of improved systemic therapy.

Concepts: Epidemiology, Cancer, Breast cancer, Metastasis, Oncology, Tumor, Neoplasm, Mammography