Discover the most talked about and latest scientific content & concepts.

Concept: Canada Goose


Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long-distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway. This article is protected by copyright. All rights reserved.

Concepts: Climate, Bird, Climate change, Arctic Circle, Branta, Canada Goose, Bird migration, Flyway


Recent reviews identified the reliance on fecal or cloacal samples as a significant limitation hindering our understanding of the avian gastrointestinal (gut) microbiota and its function. We investigated the microbiota of the esophagus, duodenum, cecum, and colon of a wild urban population of Canada goose (Branta canadensis). From a population sample of 30 individuals, we sequenced the V4 region of the 16S SSU rRNA on an Illumina MiSeq and obtained 8,628,751 sequences with a median of 76,529 per sample. These sequences were assigned to 420 bacterial OTUs and a single archaeon. Firmicutes, Proteobacteria, and Bacteroidetes accounted for 90% of all sequences. Microbiotas from the four gut regions differed significantly in their richness, composition, and variability among individuals. Microbial communities of the esophagus were the most distinctive whereas those of the colon were the least distinctive, reflecting the physical downstream mixing of regional microbiotas. The downstream mixing of regional microbiotas was also responsible for the majority of observed co-occurrence patterns among microbial families. Our results indicate that fecal and cloacal samples inadequately represent the complex patterns of richness, composition, and variability of the gut microbiota and obscure patterns of co-occurrence of microbial lineages.

Concepts: Archaea, Bacteria, Gut flora, Microbiology, Canada, Goose, Branta, Canada Goose


Sound decisions on control actions for established invasive alien species (IAS) require information on ecological as well as socio-economic impact of the species and of its management. Cost-benefit analysis provides part of this information, yet has received relatively little attention in the scientific literature on IAS.

Concepts: Canada, Invasive species, Goose, Branta, Canada Goose, Anser, Cackling Goose, Hawaiian Goose


A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

Concepts: Writing, Canada, Publishing, Publication, Goose, Branta, Canada Goose, XML


An adult female emu (Dromaius novaehollandiae) presented with anorexia, maldigestion, weight loss, and various subtle nervous deficits. After four months of unrewarding diagnostics, treatments, and supportive care, the emu was euthanized due to lack of clinical improvement and progressive weight loss. Gross pathology revealed a very narrow pylorus and multiple flaccid diverticula of the small intestines. Histopathological findings included severe lymphoplasmacytic encephalomyelitis and multifocal lymphocytic neuritis associated with the gastrointestinal tract. Immunohistochemistry and polymerase chain reaction on the brain were positive for an avian bornavirus (ABV), and partial sequencing of the matrix gene identified aquatic bird bornavirus-1 (ABBV-1), 100% identical to viruses circulating in wild Canada geese (Branta canadensis). As wild geese frequently grazed and defaecated in the emu’s outdoor exhibit, natural transmission of ABBV-1 from free-ranging waterfowl to the emu was presumed to have occurred.

Concepts: DNA, Digestive system, Bird, Goose, Branta, Canada Goose, Anser, Emu


During the winter of 2013-14, 22 Canada geese ( Branta canadensis ) were admitted to the Wildlife Clinic at the Cummings School of Veterinary Medicine at Tufts University with nonspecific neurologic abnormalities and emaciation. Five of these geese, along with three geese that were submitted dead, were evaluated via histopathology, immunohistochemistry, and reverse transcription PCR (RT-PCR) for bornaviruses. Histopathologically, six of the eight birds had lymphoplasmacytic encephalitis. One bird, which also had encephalitis, had a dilated esophagus. Lead poisoning, West Nile virus, avian influenza, and avian paramyxovirus infection were excluded from the diagnosis. Brain tissue from all eight geese was positive for bornaviral N-antigen on immunohistochemistry. Frozen brain tissue from five birds was available for bornavirus RT-PCR. Three of the five birds were positive for the bornavirus M gene. Formalin-fixed paraffin-embedded brain tissue was evaluated on the remaining three geese via RT-PCR, with one of these geese testing positive. A bornavirus was subsequently cultured in duck embryo fibroblasts from the brain of one Canada goose. This virus genome was sequenced, and the virus was identified as aquatic bird bornavirus 1. We were unable to identify any unusual features of this genome that would account for its apparent pathogenicity, given that subclinical infection with bornavirus in waterfowl is common in North America.

Concepts: Microbiology, Virus, Bird, Canada, Goose, Branta, Canada Goose, Anser


Staphylococcus aureus can colonize a range of species. Although numerous studies have isolated pathogenic bacteria from wild birds, very little is known regarding S. aureus and their potential to spread methicillin-resistant (MRSA) strains. The objective of this study was to determine the presence and molecular characteristics of S. aureus in geese fecal samples collected from ten state parks across Northeast Ohio (NEO). A total of 182 fecal samples from Canada geese (Branta canadensis) were collected in April 2015. Isolates were characterized using multi-locus sequence (MLST) and spa typing, as well as PCR to detect the presence of Panton-Valentine leukocidin (PVL), mecA, and scn genes. Antibiotic susceptibility testing was done via Vitek-2 system. The overall contamination by S. aureus in fecal samples was 7.1% (13/182); 7/182 (3.8%) were MRSA and 6/182 (3.3%) were methicillin-susceptible S. aureus (MSSA). One isolate was positive for PVL. A total of eight different spa types were observed. MLST included ST5, ST8, ST291, ST298, and ST2111. One (7.7%) MSSA isolate was multi-drug resistant. The S. aureus contamination in NEO state parks ranged from 0% (park 1, 4, 8, 9) to 35% (7/20) (park 5). Parks 2, 3, 6, and 7 had 5% (1/20) positive. The results of this study indicate that the feces of geese collected at various state parks in NEO may harbor S. aureus.

Concepts: Bacteria, Staphylococcus aureus, Antibiotic resistance, Methicillin-resistant Staphylococcus aureus, Panton-Valentine leukocidin, Staphylococcaceae, Goose, Canada Goose


The resident Dutch Northern Delta barnacle geese Branta leucopsis population expanded steadily since birds first bred in 1982, increasing agricultural conflict. Derogation shooting has been used since 2005 to scare geese from sensitive crops and to reduce population size. Numbers almost doubled to ca. 28 000 individuals during 2007-2014, despite annual removal of 15-25% of geese and adult and juvenile survival rates of 79 and 67% (cf. natural survival of 96% for both age classes). Simple population modelling, using estimated annual survival values and fixed fecundity, predicted a moderate increase to 21 500 individuals in 2014. It is unclear whether current harvest levels are sufficient to halt population growth. Shooting may be less effective because of the disproportionate take of immature post-breeding and of individuals from other populations in winter. Discrepancies between counted and modelled abundance call for caution and improved effect monitoring of derogation shooting before harvest levels are increased further.

Concepts: Demography, Population, Population ecology, Branta, Canada Goose, Geese, Cackling Goose, Barnacle Goose


We here review the collision risks posed by large-bodied, flocking geese to aircraft, exacerbated by recent major increases in northern hemisphere goose populations and air traffic volume. Mitigation of goose-aircraft strike risks requires knowledge of local goose movements, global goose population dynamics and ecology. Airports can minimise goose strikes by managing habitats within the airport property, applying deterrents to scare geese away and lethal control, but goose migration and movements at greater spatial scales present greater challenges. Habitat management outside of airports can locally reduce goose attractiveness of peripheral areas, but requires stakeholder involvement and coordination. Information on bird strike rates, individual goose movements and goose population dynamics is essential to understand how best to reduce the risk of goose strikes. Avian radar provides tactical information for mitigation measures and strategic data on local patterns of goose migration and habitat use. In the face of expanding air traffic, goose distributions and populations, these threats need to be integrated with other local, national and international stakeholder involvement to secure viable solutions to multiple conflicts.

Concepts: Demography, Population, Population ecology, Bird, Immigration, Airport, Radar, Canada Goose


Wild birds are important in the epidemiology of toxoplasmosis because they can serve as reservoir hosts, and vectors of zoonotic pathogens including Toxoplasma gondii. Canada goose (Branta canadensis) is the most widespread geese in North America. Little is known concerning T. gondii infection in both migratory, and local resident populations of Canada geese. Here, we evaluated the seroprevalence, isolation, and genetic characterization of viable T. gondii isolates from a migratory population of Canada geese. Antibodies against T. gondii were detected in 12 of 169 Canada geese using the modified agglutination test (MAT, cutoff 1:25). The hearts of 12 seropositive geese were bioassayed in mice for isolation of T. gondii. Viable parasites were isolated from eight. One isolate was obtained from a seropositive goose by both bioassays in mice, and in a cat; the cat fed infected heart excreted T. gondii oocysts. Additionally, one isolate was obtained from a pool of four seronegative (<1:25) geese by bioassay in a cat. The T. gondii isolates were further propagated in cell culture, and DNA extracted from cell culture-derived tachyzoites were characterized using 10 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genetic markers (SAG1, 5' and 3'SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). The results revealed five different genotypes. ToxoDB PCR-RFLP genotype #1 (type II) in one isolate, genotype #2 (type III) in four isolates, genotype #4 in two isolates, and two new genotypes (ToxoDB PCR-RFLP genotype #266 in one isolate and #267 in one isolate) were identified. These results indicate genetic diversity of T. gondii strains in the Canada geese, and this migratory bird might provide a mechanism of T. gondii transmission at great distances from where an infection was acquired.

Concepts: DNA, Apicomplexa, Rat, Toxoplasmosis, Toxoplasma gondii, Goose, Branta, Canada Goose