SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Cambrian explosion

208

A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth’s surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635-542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth.

Concepts: Photosynthesis, Evolution, Earth, Plate tectonics, Animal, Atmosphere, Cambrian explosion, Neoproterozoic

207

Recent discoveries of fossil nervous tissue in Cambrian fossils have allowed researchers to trace the origin and evolution of the complex arthropod head and brain based on stem groups close to the origin of the clade, rather than on extant, highly derived members. Here we show that Kerygmachela from Sirius Passet, North Greenland, a primitive stem-group euarthropod, exhibits a diminutive (protocerebral) brain that innervates both the eyes and frontal appendages. It has been surmised, based on developmental evidence, that the ancestor of vertebrates and arthropods had a tripartite brain, which is refuted by the fossil evidence presented here. Furthermore, based on the discovery of eyes in Kerygmachela, we suggest that the complex compound eyes in arthropods evolved from simple ocelli, present in onychophorans and tardigrades, rather than through the incorporation of a set of modified limbs.

Concepts: Evolution, Insect, Arthropod, Annelid, Fossil, Paleontology, Cambrian explosion, Cambrian

169

Here we report exceptionally preserved non-biomineralized compound eyes of a non-trilobite arthropod Cindarella eucalla from the lower Cambrian Chengjiang Lagerstätte, China. The specimen represents the oldest microanatomical evidence confirming the occurrence of highly developed vision in the early Cambrian, over 2,000 ommatidia in each eye. Moreover, a quantitative analysis of the distribution of eyes related to life habit, feeding types, and phyla respectively, from the Chengjiang biota indicates that specimens with eyes mostly belong to the arthropods, and they usually were actively mobile epifaunal and nektonic forms as hunters or scavengers. Arthropods took the lead in evolution of ‘good vision’ and domination in Cambrian communities, which supports the hypothesis that the origin and evolution of ‘good vision’ was a key trait that promoted preferential diversification and formed the foundation of modern benthic ecosystems in the early Cambrian ocean.

Concepts: Brain, Life, Eye, Cambrian explosion, Eye color, Trilobite, Cambrian, Chengjiang County

169

The great majority of metazoans belong to bilaterian phyla. They diversified during a short interval in Earth’s history known as the Cambrian explosion, ∼540 million years ago. However, the genetic basis of these events is poorly understood. Here we argue that the vertebrate genome organizer CTCF (CCCTC-binding factor) played an important role for the evolution of bilaterian animals. We provide evidence that the CTCF protein and a genome-wide abundance of CTCF-specific binding motifs are unique to bilaterian phyla, but absent in other eukaryotes. We demonstrate that CTCF-binding sites within vertebrate and Drosophila Hox gene clusters have been maintained for several hundred million years, suggesting an ancient origin of the previously known interaction between Hox gene regulation and CTCF. In addition, a close correlation between the presence of CTCF and Hox gene clusters throughout the animal kingdom suggests conservation of the Hox-CTCF link across the Bilateria. On the basis of these findings, we propose the existence of a Hox-CTCF kernel as principal organizer of bilaterian body plans. Such a kernel could explain (i) the formation of Hox clusters in Bilateria, (ii) the diversity of bilaterian body plans, and (iii) the uniqueness and time of onset of the Cambrian explosion.

Concepts: DNA, Gene expression, Evolution, Organism, Animal, Chordate, Cnidaria, Cambrian explosion

148

Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision.

Concepts: Evolution, Insect, Eye, Fossil, Paleontology, Cambrian explosion, Trilobite, Cambrian

147

Reinvestigation of the Kushk and Chahmir areas (Bafq and Behabad regions) of central Iran has yielded a diverse assemblage of Ediacaran fossils, including several new species, just prior to the Cambrian explosion of complex animals. The Kushk series consists mainly of shallow marine carbonate deposits followed by deep-water calcareous marine shales. Ediacaran fossils occur commonly in the shale deposits and include biostratigraphically-important taxa Cloudina and Corumbella, which confirms a latest Ediacaran age for these deposits, the youngest examples of Kimberellomorphs (stem-group molluscs) that helps bridge the gap between their first occurrence in the middle-Ediacaran and the crown diversification in the Cambrian, and likely sponges, which are rare prior to the Cambrian.

Concepts: Animal, Sedimentary rock, Paleontology, Cambrian explosion, Crown group, Cambrian, Ediacaran, Ediacara biota

97

Morphology-based phylogenetic analyses support the monophyly of the Scalidophora (Kinorhyncha, Loricifera, Priapulida) and Nematoida (Nematoda, Nematomorpha), together constituting the monophyletic Cycloneuralia that is the sister group of the Panarthropoda. Kinorhynchs are unique among living cycloneuralians in having a segmented body with repeated cuticular plates, longitudinal muscles, dorsoventral muscles, and ganglia. Molecular clock estimates suggest that kinorhynchs may have diverged in the Ediacaran Period. Remarkably, no kinorhynch fossils have been discovered, in sharp contrast to priapulids and loriciferans that are represented by numerous Cambrian fossils. Here we describe several early Cambrian (~535 million years old) kinorhynch-like fossils, including the new species Eokinorhynchus rarus and two unnamed but related forms. E. rarus has characteristic scalidophoran features, including an introvert with pentaradially arranged hollow scalids. Its trunk bears at least 20 annuli each consisting of numerous small rectangular plates, and is armored with five pairs of large and bilaterally placed sclerites. Its trunk annuli are reminiscent of the epidermis segments of kinorhynchs. A phylogenetic analysis resolves E. rarus as a stem-group kinorhynch. Thus, the fossil record confirms that all three scalidophoran phyla diverged no later than the Cambrian Period.

Concepts: Animal, Phylogenetics, Fossil, Cambrian explosion, Cambrian, Ecdysozoa, Kinorhyncha, Priapulida

81

Arthropoda, Tardigrada and Onychophora evolved from lobopodians, a paraphyletic group of disparate Palaeozoic vermiform animals with soft legs. Although the morphological diversity that this group encompasses likely illustrates the importance of niche diversification in the early radiation of panarthropods, the ecology of lobopodians remains poorly characterized.

Concepts: Biodiversity, Evolution, Cambrian explosion

53

A new genus, Dendrogramma, with two new species of multicellular, non-bilaterian, mesogleal animals with some bilateral aspects, D. enigmatica and D. discoides, are described from the south-east Australian bathyal (400 and 1000 metres depth). A new family, Dendrogrammatidae, is established for Dendrogramma. These mushroom-shaped organisms cannot be referred to either of the two phyla Ctenophora or Cnidaria at present, because they lack any specialised characters of these taxa. Resolving the phylogenetic position of Dendrogramma depends much on how the basal metazoan lineages (Ctenophora, Porifera, Placozoa, Cnidaria, and Bilateria) are related to each other, a question still under debate. At least Dendrogramma must have branched off before Bilateria and is possibly related to Ctenophora and/or Cnidaria. Dendrogramma, therefore, is referred to Metazoa incertae sedis. The specimens were fixed in neutral formaldehyde and stored in 80% ethanol and are not suitable for molecular analysis. We recommend, therefore, that attempts be made to secure new material for further study. Finally similarities between Dendrogramma and a group of Ediacaran (Vendian) medusoids are discussed.

Concepts: Organism, Animal, Cnidaria, Ctenophora, Sponge, Cambrian explosion, Eumetazoa, Bilateria

51

Fossils of macroscopic eukaryotes are rarely older than the Ediacaran Period (635-541 million years (Myr)), and their interpretation remains controversial. Here, we report the discovery of macroscopic fossils from the 1,560-Myr-old Gaoyuzhuang Formation, Yanshan area, North China, that exhibit both large size and regular morphology. Preserved as carbonaceous compressions, the Gaoyuzhuang fossils have statistically regular linear to lanceolate shapes up to 30 cm long and nearly 8 cm wide, suggesting that the Gaoyuzhuang fossils record benthic multicellular eukaryotes of unprecedentedly large size. Syngenetic fragments showing closely packed ∼10 μm cells arranged in a thick sheet further reinforce the interpretation. Comparisons with living thalloid organisms suggest that these organisms were photosynthetic, although their phylogenetic placement within the Eukarya remains uncertain. The new fossils provide the strongest evidence yet that multicellular eukaryotes with decimetric dimensions and a regular developmental program populated the marine biosphere at least a billion years before the Cambrian Explosion.

Concepts: Evolution, Organism, Eukaryote, Plant, Animal, Cambrian explosion, Cambrian, Ediacaran