Discover the most talked about and latest scientific content & concepts.

Concept: Caldera


Kikai submarine caldera to the south of the Kyushu Island, SW Japan, collapsed at 7.3 ka during the latest supereruption (>500 km3 of magma) in the Japanese Archipelago. Multi functional research surveys of the T/S Fukae Maru in this caldera, including multi-beam echosounder mapping, remotely operated vehicle observation, multi-channel seismic reflection survey, and rock sampling by dredging and diving, provided lines of evidence for creation of a giant rhyolite lava dome (~32 km3) after the caldera collapse. This dome is still active as water column anomalies accompanied by bubbling from its surface are observed. Chemical characteristics of dome-forming rhyolites akin to those of presently active small volcanic cones are different from those of supereruption. The voluminous post-caldera activity is thus not caused simply by squeezing the remnant of syn-caldera magma but may tap a magma system that has evolved both chemically and physically since the 7.3-ka supereruption.

Concepts: Japan, Volcano, Rhyolite, Lava, Volcanology, Caldera, Kagoshima Prefecture, Kumamoto Prefecture


Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

Concepts: Rock, Volcano, Magma, Lava, Caldera, Mount Vesuvius, 1980 eruption of Mount St. Helens, Plinian eruption


Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km(3), submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.

Concepts: Volcano, Tsunami, Flood, Bronze Age, Volcanology, Caldera, Santorini, Ignimbrite


The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

Concepts: Structure, Earth, Igneous rock, System, Magma, Basalt, Volcanology, Caldera


The omnipresence of lithium-ion batteries in mobile electronics, and hybrid and electric vehicles necessitates discovery of new lithium resources to meet rising demand and to diversify the global lithium supply chain. Here we demonstrate that lake sediments preserved within intracontinental rhyolitic calderas formed on eruption and weathering of lithium-enriched magmas have the potential to host large lithium clay deposits. We compare lithium concentrations of magmas formed in a variety of tectonic settings using in situ trace-element measurements of quartz-hosted melt inclusions to demonstrate that moderate to extreme lithium enrichment occurs in magmas that incorporate felsic continental crust. Cenozoic calderas in western North America and in other intracontinental settings that generated such magmas are promising new targets for lithium exploration because lithium leached from the eruptive products by meteoric and hydrothermal fluids becomes concentrated in clays within caldera lake sediments to potentially economically extractable levels.Lithium is increasingly being utilized for modern technology in the form of lithium-ion batteries. Here, using in situ measurements of quartz-hosted melt inclusions, the authors demonstrate that preserved lake sediments within rhyolitic calderas have the potential to host large lithium-rich clay deposits.

Concepts: Igneous rock, Lithium-ion battery, Lithium, Granite, Electric car, Felsic, Lava, Caldera


Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

Concepts: Hawaii, Volcano, Magma, Basalt, Lava, Volcanology, Caldera, Mantle plume


Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the ‘Minoan’ caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

Concepts: Volcano, Basalt, Lava, Volcanology, Campi Flegrei, Caldera, Santorini, Volcanic Explosivity Index


Natural CO2 releases from shallow marine hydrothermal vents are assumed to mix into the water column, and not accumulate into stratified seafloor pools. We present newly discovered shallow subsea pools located within the Santorini volcanic caldera of the Southern Aegean Sea, Greece, that accumulate CO2 emissions from geologic reservoirs. This type of hydrothermal seafloor pool, containing highly concentrated CO2, provides direct evidence of shallow benthic CO2 accumulations originating from sub-seafloor releases. Samples taken from within these acidic pools are devoid of calcifying organisms, and channel structures among the pools indicate gravity driven flow, suggesting that seafloor release of CO2 at this site may preferentially impact benthic ecosystems. These naturally occurring seafloor pools may provide a diagnostic indicator of incipient volcanic activity and can serve as an analog for studying CO2 leakage and benthic accumulations from subsea carbon capture and storage sites.

Concepts: Carbon dioxide, Hydrothermal vent, Volcano, Greece, Caldera, Santorini, Cyclades, Yellowstone Caldera


Despite their importance for eruption forecasting the causes of seismic rupture processes during caldera unrest are still poorly reconstructed from seismic images. Seismic source locations and waveform attenuation analyses of earthquakes in the Campi Flegrei area (Southern Italy) during the 1983-1984 unrest have revealed a 4-4.5 km deep NW-SE striking aseismic zone of high attenuation offshore Pozzuoli. The lateral features and the principal axis of the attenuation anomaly correspond to the main source of ground uplift during the unrest. Seismic swarms correlate in space and time with fluid injections from a deep hot source, inferred to represent geochemical and temperature variations at Solfatara. These swarms struck a high-attenuation 3-4 km deep reservoir of supercritical fluids under Pozzuoli and migrated towards a shallower aseismic deformation source under Solfatara. The reservoir became aseismic for two months just after the main seismic swarm (April 1, 1984) due to a SE-to-NW directed input from the high-attenuation domain, possibly a dyke emplacement. The unrest ended after fluids migrated from Pozzuoli to the location of the last caldera eruption (Mt. Nuovo, 1538 AD). The results show that the high attenuation domain controls the largest monitored seismic, deformation, and geochemical unrest at the caldera.

Concepts: Italy, Volcano, Naples, Campania, Campi Flegrei, Caldera, Pozzuoli, Solfatara


The Jovian moon Io hosts the most powerful persistently active volcano in the Solar System, Loki Patera. The interior of this volcanic, caldera-like feature is composed of a warm, dark floor covering 21,500 square kilometres surrounding a much cooler central ‘island’. The temperature gradient seen across areas of the patera indicates a systematic resurfacing process, which has been seen to occur typically every one to three years since the 1980s. Analysis of past data has indicated that the resurfacing progressed around the patera in an anti-clockwise direction at a rate of one to two kilometres per day, and that it is caused either by episodic eruptions that emplace voluminous lava flows or by a cyclically overturning lava lake contained within the patera. However, spacecraft and telescope observations have been unable to map the emission from the entire patera floor at sufficient spatial resolution to establish the physical processes at play. Here we report temperature and lava cooling age maps of the entire patera floor at a spatial sampling of about two kilometres, derived from ground-based interferometric imaging of thermal emission from Loki Patera obtained on 8 March 2015 ut as the limb of Europa occulted Io. Our results indicate that Loki Patera is resurfaced by a multi-phase process in which two waves propagate and converge around the central island. The different velocities and start times of the waves indicate a non-uniformity in the lava gas content and/or crust bulk density across the patera.

Concepts: Solar System, Volcano, Magma, Basalt, Io, Lava, Caldera, Volcanic gas