Discover the most talked about and latest scientific content & concepts.

Concept: Cadmium telluride


Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

Concepts: Semiconductor, Cadmium, Solar cell, Photovoltaics, Cost, Cadmium telluride, Cadmium sulfide, United States dollar


We report a novel approach for synthesizing CdS and CdSe quantum dots subsectionally sensitized double-layer ZnO nanorods for solar cells, which are comprised of CdS QDs-sensitized bottom-layer ZnO NRs and CdSe QDs-sensitized top-layer ZnO NRs. X-ray diffraction study and scanning electron microscopy analysis indicate that the solar cells of subsectionally sensitized double-layer ZnO NRs, which are the hexagonal wurtzite crystal structure, have been successfully achieved. The novel structure enlarged the range of absorbed light and enhanced the absorption intensity of light. The I-V characteristics show that the double-layer structure improved both the current density (J(sc)) and fill factor (FF) by 50%, respectively, and power conversion efficiency (η) was increased to twice in comparison with the CdS QDs-sensitized structure.

Concepts: Electron, X-ray, Light, Photoelectric effect, Cadmium, Solar cell, Energy conversion efficiency, Cadmium telluride


Coaxial nanorods with a single-crystalline core and nanocrystal sensitizer shell are a promising nanostructure to enhance the performance of semiconductor sensitized solar cells. Herein, we report the fabrication of coaxial nanorods by depositing n-type CdS and p-type CdTe nanocrystals sequentially on ZnO nanorods. We find that p-type CdTe nanocrystals can work jointly with n-type CdS nanocrystals to enhance the photocurrent and voltage, achieving a conversion efficiency more than three times that of pure ZnO/CdS nanorods. Electrochemical impedance spectroscopy characterization suggests that the stepwise band structure of ZnO/CdS/CdTe is conducive to improving charge separation and extending the electron diffusion length, finally contributing to a high conversion efficiency.

Concepts: Spectroscopy, Electrochemistry, Nanomaterials, Semiconductor, Solar cell, Diode, Band gap, Cadmium telluride


Cadmium sulfide (CdS)-decorated zinc oxide (ZnO) nanorod heterostructures have been grown by a combination of hydrothermal and pulsed laser deposition techniques. Hybrid photovoltaic devices have been fabricated with CdS modified and unmodified ZnO nanorods blended separately with regioregular poly(3-hexylthiophene) (P3HT) polymer as the active layer. The solar cell performance has been studied as a function of ZnO concentration and the casting solvent (chlorobenzene, chloroform, and toluene) in the unmodified ZnO:P3HT devices. The power conversion efficiency is found to be enhanced with the increase of ZnO concentration up to a certain limit, and decreases at a very high concentration. The surface modification of ZnO nanorods with CdS leads to an increase in the open circuit voltage and short-circuit current, with enhanced efficiency by 300% over the unmodified ZnO:P3HT device, because of the cascaded band structure favoring charge transfer to the external circuit.

Concepts: Zinc, Cadmium, Solar cell, Titanium dioxide, Band gap, Cadmium telluride, Cadmium oxide, Zinc sulfide


Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 μm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution.

Concepts: X-ray, Light, Electromagnetic radiation, Medical imaging, Radiography, Magnetic resonance imaging, Arithmetic mean, Cadmium telluride


Open structure ZnO/CdSe core/shell nanoneedle arrays were prepared on a conducting glass (SnO2:F) substrate by solution deposition and electrochemical techniques. A uniform CdSe shell layer with a grain size of approximately several tens of nanometers was formed on the surface of ZnO nanoneedle cores after annealing at 400 [degree sign]C for 1.5 h. Fabricated solar cells based on these nanostructures exhibited a high short-circuit current density of about 10.5 mA/cm2 and an overall power conversion efficiency of 1.07 % with solar illumination of 100 mW/cm2. Incident photo-to-current conversion efficiencies higher than 75 % were also obtained.

Concepts: Light, Electric current, Solar cell, Direct current, Energy conversion, Energy conversion efficiency, Glass, Cadmium telluride


A facile electrodeposition technique was utilized to deposit single-walled carbon nanotubes (SWNTs) with cadmium telluride (CdTe) with well-controlled size, density, surface morphology, and composition. By controlling the applied charge, the morphology of these hybrid nanostructures was altered from CdTe nanoparticles on SWNTs to SWNT/CdTe core/shell nanostructures and the composition of the CdTe nanoparticles was altered from Te-rich (29 at% Cd) to Cd-rich (79 at% Cd) CdTe by adjusting the deposition potential. The electrical and optoelectrical properties of these hybrid nanostructures showed that photo-induced current can be tuned by tailoring the conductivity type (n-type or p-type), morphology, and size of the CdTe nanostructures, with a maximum photosensitivity (ΔI/I(0)) of about 30% for SWNT/Cd-rich CdTe (n-type) core/shell nanostructures. This work demonstrates a novel approach for synthesizing metal chalcogenide/SWNT hybrid nanostructures for various electrical and optoelectrical applications.

Concepts: Cadmium, Carbon nanotube, Cadmium telluride, Cadmium sulfide


The optical properties of cadmium sulfide (CdS) nanoparticles in suspension are affected by morphology and suspending solvent. Time dependent stability of these properties is solvent dependent and is affected by illumination conditions under which the suspension is stored. Moreover, minute amounts of dissolved oxygen are sufficient in order to facilitate photodegradation.

Concepts: Oxygen, Colloid, Sulfur, Cadmium, Cadmium telluride, Cadmium sulfide, Cadmium pigments, Greenockite


We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.

Concepts: X-ray, Tellurium, Cadmium telluride, Tellurides, Cadmium zinc telluride, Zinc telluride, Application-specific integrated circuit, Nondestructive testing


Using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.

Concepts: Cadmium, Solar cell, Photovoltaics, Bipolar junction transistor, Diode, P-n junction, Photovoltaic array, Cadmium telluride