SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Cadmium sulfide

38

Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

Concepts: Semiconductor, Cadmium, Solar cell, Photovoltaics, Cost, Cadmium telluride, Cadmium sulfide, United States dollar

30

Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO(4)·H(2)O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 μm sized globular agglomerations. Here, we study cadmium yellow in the painting “Flowers in a blue vase” by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (μ-XRD), microscopic X-ray absorption near-edge spectroscopy (μ-XANES), microscopic X-ray fluorescence (μ-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (μ-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO(4) compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd(2+) ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO(4)(2-) anions, for their part, found a suitable reaction partner in Pb(2+) ions stemming from a dissolved lead-based siccative that was added to the varnish to promote its drying. The resulting opaque anglesite compound in the varnish, in combination with the underlying CdC(2)O(4) layer at the paint/varnish interface, account for the orange-gray crust that is disfiguring the painting on a macroscopic level. In this way, the results presented in this paper demonstrate how, through a judicious combined use of several microanalytical methods with speciation capabilities, many new insights can be obtained from two minute, but highly complex and heterogeneous paint samples.

Concepts: Spectroscopy, Cadmium, Pigment, Cadmium sulfide, Expressionism, Vincent van Gogh, Cadmium pigments, Les XX

28

Well-aligned CdS nanorod arrays (CdS NRs) with ∼100nm in diameter and ∼700nm in length were fabricated on FTO (fluorine-doped tin oxide) substrate by using glutathione as capping agents. The growth of CdS NRs was studied in details by exploring the roles of each active binding group in glutathione. The thiol group in glutathione plays an important role in forming a compact CdS nanocrystal film, upon which the nanorods grow subsequently via the synergetic effect of thiol and dicarboxyl groups in glutathione. The influence of surface passivation with glutathione on the photoelectrical property of CdS NRs was also tested. The results revealed that glutathione ligands encapsulated in the surfaces of CdS NRs act as insulating barriers between CdS NRs and solution, hindering charge transport. Hybrid photovoltaic cells of FTO/CdS NRs/P3HT (poly(3-hexylthiophene))/Au were then assembled. The performance of the photovoltaic devices was increased with increasing the length of the as-prepared CdS nanorods and further enhanced to the highest efficiency of 0.373% after the thermal sulfuration treatment.

Concepts: Zinc, Disulfide bond, Sulfur, Cadmium, Photovoltaics, Cysteine, Thiol, Cadmium sulfide

27

A facile electrodeposition technique was utilized to deposit single-walled carbon nanotubes (SWNTs) with cadmium telluride (CdTe) with well-controlled size, density, surface morphology, and composition. By controlling the applied charge, the morphology of these hybrid nanostructures was altered from CdTe nanoparticles on SWNTs to SWNT/CdTe core/shell nanostructures and the composition of the CdTe nanoparticles was altered from Te-rich (29 at% Cd) to Cd-rich (79 at% Cd) CdTe by adjusting the deposition potential. The electrical and optoelectrical properties of these hybrid nanostructures showed that photo-induced current can be tuned by tailoring the conductivity type (n-type or p-type), morphology, and size of the CdTe nanostructures, with a maximum photosensitivity (ΔI/I(0)) of about 30% for SWNT/Cd-rich CdTe (n-type) core/shell nanostructures. This work demonstrates a novel approach for synthesizing metal chalcogenide/SWNT hybrid nanostructures for various electrical and optoelectrical applications.

Concepts: Cadmium, Carbon nanotube, Cadmium telluride, Cadmium sulfide

26

The optical properties of cadmium sulfide (CdS) nanoparticles in suspension are affected by morphology and suspending solvent. Time dependent stability of these properties is solvent dependent and is affected by illumination conditions under which the suspension is stored. Moreover, minute amounts of dissolved oxygen are sufficient in order to facilitate photodegradation.

Concepts: Oxygen, Colloid, Sulfur, Cadmium, Cadmium telluride, Cadmium sulfide, Cadmium pigments, Greenockite

4

Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization.

Concepts: Metabolism, Enzyme, Chemistry, Sulfur, Cadmium, Hydrogen sulfide, Nature, Cadmium sulfide

0

Cadmium (Cd) is an environmental electrophile modifying protein nucleophiles, thereby modulating cellular signaling and toxicity. While reactive persulfides/polysulfides exhibit relatively high nucleophilic properties, their roles in the altered gene expression and toxicity caused by Cd remain unclear. Exposing primary mouse hepatocytes to Cd caused heat shock protein 70 (HSP70) and metallothionein (MT)-I/II to be upregulated and cytotoxicity to occur. These effects were blocked in the presence of polysulfide sodium tetrasulfide (Na2S4). Electrospray ionization mass spectrometry analysis indicated that cadmium sulfide (CdS) and cadmium thiosulfate (CdS2O3) were produced when Cd reacted with Na2S4. Authentic CdS did not cause cellular signaling responses to be activated or hepatotoxic effects, while CdS2O3 caused similar effects of Cd. HSP70 and MT-I/II upregulation and hepatotoxicity caused by exposure to Cd were significantly enhanced by the deletion of cystathionine -lyase (CSE), which catalyzes the formation of reactive persulfides/polysulfides. Deleting CSE also exacerbated Cd-mediated liver injury, whereas little hepatic damage was found when CdS or Na2S4 along with Cd was administered. Overall, the results suggest that the persulfide/polysulfide-mediated formation of sulfur adducts of Cd such as CdS rather than CdS2O3 is, at least in part, involved in decreasing the Cd-mediated activation of cellular signaling and toxicity.

Concepts: Mass spectrometry, Toxicology, Sulfur, Cadmium, Electrospray ionization, Heat shock protein, Hepatotoxicity, Cadmium sulfide

0

We investigate the self-assembly of a cylinder-forming polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) mixed with trioctylphosphine oxide (TOPO) capped cadmium selenide (CdSe) quantum dots (QDs). The QDs were found to be enthalpically compatible with the P4VP chains via ligand displacement of TOPO from the QD surface. However, the QDs were found to localize preferentially at the PS/P4VP interphase plausibly to gain translational entropy in order to further lower the energetics of the self-assembled structure. Interestingly, the morphological transformation observed with increasing weight fraction of the QDs in the BCP/QD composite was driven by the migration of the displaced TOPO from the QD surface to the PS phase, effectively increasing its total volume fraction. Hence, the PS-b-P4VP BCP with PS as the minority block displayed lamellar morphology in its composite with QDs. Furthermore, the preferred localization of the QDs at the PS/P4VP interface led to the formation of a trilayer lamellar morphology which was deduced from the suppression of the primary scattering peak, relative to higher order peaks in the SAXS data. The morphological transformation was accompanied by a significant increase in the domain spacing due to excessive stretching of the longer P4VP chains of the asymmetric block copolymer. However, in the PS-b-P4VP/CdSe composites with P4VP as the minority block, cylindrical morphology was retained and the domain spacing decreased due to dominance of the co-surfactant effect as well as interfacial localization of CdSe QDs. We also demonstrate that these PS-b-P4VP/CdSe self-assembled hybrid materials could further be used to obtain isolated core-shell nanoobjects, such as nanofibers and nanosheets, containing CdSe QDs. The nanoobjects so obtained exhibited photoluminescence properties typical of CdSe quantum dots. These photoluminescent polymer nanoobjects could have potential applications in biological targeting and fluorescence labeling.

Concepts: Polymer, Copolymer, Thermodynamics, Cadmium, Luminescence, Cadmium selenide, Cadmium telluride, Cadmium sulfide

0

The inner filter effect (IFE) is an effective way for fluorescence modulation and thus has been extensively explored for the development of fluorescence assays. Theoretically, the key to maximize the sensitivity of IFE-based fluorescence assays is to enlarge the overlap between the absorption of the absorber and the excitation/emission of the fluorophore. Therefore, in this work, the tunable excitation of quantum dots (QDs) was explored for screening of the IFE pair having the best IFE-based assay sensitivity. A series of QDs, including CdTe QDs with different sizes, carbon dots, Cu-doped CdS QDs, and Mn-doped ZnS QDs, were investigated. PNPP (p-nitrophenylphosphate) was chosen as the absorber since its absorption overlapped with the above QDs. Besides, it can be catalytically converted to p-nitrophenol (PNP) by alkaline phosphatase (ALP) together with an absorption spectrum change (red-shift). Interestingly, it was found that the IFE efficiency of different PNPP-QD pairs increased almost linearly with the corresponding spectral overlap, and Mn-doped ZnS QDs were eventually chosen for the IFE assay of ALP because of the maximum spectral overlap and thus the best sensitivity. A simple and sensitive turn-on phosphorescence ALP assay was developed, with a detection limit of 4 × 10(-4) U L(-1). Because of the high sensitivity, we also found that ALP of different origins possessed different enzymatic activities. The developed ALP phosphorescence assay was successfully employed for the analysis of ALP in serum samples.

Concepts: Spectroscopy, Alkaline phosphatase, Solar cell, Luminescence, Enzyme assay, Band gap, Cadmium sulfide, Para-Nitrophenylphosphate

0

To optimize the optical properties of semiconductor nanoplatelets, simple routes to add high-quality shells are needed. We demonstrate uniform growth of CdS shells on CdSe nanoplatelets at 300 °C, overcoming limitations of previous low-temperature syntheses. We obtain core/shell nanoplatelets with spectrally narrow (20 nm) and efficient emission for shells up to 4 nm thick.

Concepts: Optics, Cadmium sulfide