SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Butter

536

Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk-α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)-as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact “switch to low ω-6 foods” > “switch to organic dairy products” ≈ “increase consumption of conventional dairy products.” Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of developmental and chronic health problems.

Concepts: Nutrition, Fatty acid, Fatty acids, Omega-3 fatty acid, Butter, Eicosapentaenoic acid, Omega-6 fatty acid, Linoleic acid

429

Dietary guidelines recommend avoiding foods high in saturated fat. Yet, emerging evidence suggests cardiometabolic benefits of dairy products and dairy fat. Evidence on the role of butter, with high saturated dairy fat content, for total mortality, cardiovascular disease, and type 2 diabetes remains unclear. We aimed to systematically review and meta-analyze the association of butter consumption with all-cause mortality, cardiovascular disease, and diabetes in general populations.

Concepts: Nutrition, Diabetes mellitus type 2, Systematic review, Milk, Fat, Butter, Saturated fat, Dairy product

293

The growing popularity of unpasteurized milk in the United States raises public health concerns. We estimated outbreak-related illnesses and hospitalizations caused by the consumption of cow’s milk and cheese contaminated with Shiga toxin-producing Escherichia coli, Salmonella spp., Listeria monocytogenes, and Campylobacter spp. using a model relying on publicly available outbreak data. In the United States, outbreaks associated with dairy consumption cause, on average, 760 illnesses/year and 22 hospitalizations/year, mostly from Salmonella spp. and Campylobacter spp. Unpasteurized milk, consumed by only 3.2% of the population, and cheese, consumed by only 1.6% of the population, caused 96% of illnesses caused by contaminated dairy products. Unpasteurized dairy products thus cause 840 (95% CrI 611-1,158) times more illnesses and 45 (95% CrI 34-59) times more hospitalizations than pasteurized products. As consumption of unpasteurized dairy products grows, illnesses will increase steadily; a doubling in the consumption of unpasteurized milk or cheese could increase outbreak-related illnesses by 96%.

Concepts: United States, Milk, Butter, Cattle, Pasteurization, Dairy product, Cheese, Raw milk

224

The desire to consume high volumes of fat is thought to originate from an evolutionary pressure to hoard calories, and fat is among the few energy sources that we can store over a longer time period. From an ecological perspective, however, it would be beneficial to detect fat from a distance, before ingesting it. Previous results indicate that humans detect high concentrations of fatty acids by their odor. More important though, would be the ability to detect fat content in real food products. In a series of three sequential experiments, using study populations from different cultures, we demonstrated that individuals are able to reliably detect fat content of food via odors alone. Over all three experiments, results clearly demonstrated that humans were able to detect minute differences between milk samples with varying grades of fat, even when embedded within a milk odor. Moreover, we found no relation between this performance and either BMI or dairy consumption, thereby suggesting that this is not a learned ability or dependent on nutritional traits. We argue that our findings that humans can detect the fat content of food via odors may open up new and innovative future paths towards a general reduction in our fat intake, and future studies should focus on determining the components in milk responsible for this effect.

Concepts: Nutrition, Fatty acid, Eating, Fat, Fatty acid metabolism, Butter, Saturated fat, Carbohydrate

170

Observational studies provide evidence that a higher intake of protein from plant-based foods and certain animal-based foods is associated with a lower risk for type 2 diabetes. However, there are few distinguishable differences between the glucoregulatory qualities of the proteins in plant-based foods, and it is likely their numerous non-protein components (e.g., fibers and phytochemicals) that drive the relationship with type 2 diabetes risk reduction. Conversely, the glucoregulatory qualities of the proteins in animal-based foods are extremely divergent, with a higher intake of certain animal-based protein foods showing negative effects, and others showing neutral or positive effects on type 2 diabetes risk. Among the various types of animal-based protein foods, a higher intake of dairy products (such as milk, yogurt, cheese and whey protein) consistently shows a beneficial relationship with glucose regulation and/or type 2 diabetes risk reduction. Intervention studies provide evidence that dairy proteins have more potent effects on insulin and incretin secretion compared to other commonly consumed animal proteins. In addition to their protein components, such as insulinogenic amino acids and bioactive peptides, dairy products also contain a food matrix rich in calcium, magnesium, potassium, trans-palmitoleic fatty acids, and low-glycemic index sugars-all of which have been shown to have beneficial effects on aspects of glucose control, insulin secretion, insulin sensitivity and/or type 2 diabetes risk. Furthermore, fermentation and fortification of dairy products with probiotics and vitamin D may improve a dairy product’s glucoregulatory effects.

Concepts: Protein, Amino acid, Nutrition, Insulin, Diabetes mellitus type 2, Diabetes mellitus, Milk, Butter

98

Objective. To study associations between dairy fat intake and development of central obesity. Design. A prospective population-based cohort study with two surveys 12 years apart. Setting. Nine municipalities selected from different parts of Sweden representing the rural areas in the country. Subjects. 1782 men (farmers and non-farmers) aged 40-60 years at baseline participated in a baseline survey (participation rate 76%) and 1589 men participated at the follow-up. 116 men with central obesity at baseline were excluded from the analyses. Main outcome measures. Central obesity at follow-up defined as waist hip ratio ≥ 1. Results. 197 men (15%) developed central obesity during follow-up. A low intake of dairy fat at baseline (no butter and low fat milk and seldom/never whipping cream) was associated with a higher risk of developing central obesity (OR 1.53, 95% CI 1.05-2.24) and a high intake of dairy fat (butter as spread and high fat milk and whipping cream) was associated with a lower risk of central obesity (OR 0.52, 95% CI 0.33-0.83) as compared with medium intake (all other combinations of spread, milk, and cream) after adjustment for intake of fruit and vegetables, smoking, alcohol consumption, physical activity, age, education, and profession. The associations between dairy fat intake and central obesity were consistent across body mass index categories at baseline. Conclusion. A high intake of dairy fat was associated with a lower risk of central obesity and a low dairy fat intake was associated with a higher risk of central obesity.

Concepts: Cohort study, Nutrition, Obesity, Milk, Body mass index, Butter, Waist-hip ratio, Cream

90

To determine health and equity benefits and cost effectiveness of policies to reduce or eliminate trans fatty acids from processed foods, compared with consumption remaining at most recent levels in England.

Concepts: Nutrition, Fatty acids, Heart disease, Hydrogenation, Butter, Saturated fat, Unsaturated fat

68

57

-In prospective studies, relationship of self-reported consumption of dairy foods with risk of diabetes mellitus is inconsistent. Few studies have assessed dairy fat, using circulating biomarkers, and incident diabetes. We tested hypothesis that circulating fatty acid biomarkers of dairy fat, 15:0, 17:0, and t-16:1n-7, are associated with lower incident diabetes.

Concepts: Nutrition, Fatty acid, Diabetes mellitus, Obesity, Triglyceride, Essential fatty acid, Fat, Butter

57

To comprehensively review the data on the relationship between the consumption of dairy fat and high-fat dairy foods, obesity, and cardiometabolic disease.

Concepts: Metabolism, Nutrition, Butter, Dairy, Malnutrition, Pasteurization, Dairy product