Discover the most talked about and latest scientific content & concepts.

Concept: Burkholderia


The Gram-negative bacterium Burkholderia pseudomallei is a serious environmental pathogen and the causative agent of the often fatal melioidosis. Disease occurs following exposure to contaminated water or soil, usually through cuts in the skin or via inhalation. However, the underlying mechanisms of pathogenicity remain poorly understood. B. pseudomallei is endemic to South East Asia and Northern Australia where infections are associated with antibiotic resistance and high mortality rates. Categorization of the pathogen as a potential biowarfare agent has also made research into vaccine development a high priority. Recent genome-scale screening has produced a large number of putative gene candidates from B. pseudomallei with the potential for development into vaccines. This mini-review will discuss the advantages and limitations of this novel approach, how these new techniques can complement existing strategies, and outline aims for future research.

Concepts: Immune system, Bacteria, Microbiology, Burkholderia mallei, Burkholderia, Burkholderia pseudomallei, Chloramphenicol, Melioidosis


The genus Burkholderia consists of diverse species which includes both “friends” and “foes.” Some of the “friendly” Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.

Concepts: Immune system, Bacteria, Biological warfare, Burkholderia mallei, Burkholderia, Burkholderia pseudomallei, Melioidosis, Glanders


, the etiologic agent of melioidosis, is endemic in northern Australia and Southeast Asia and can cause severe septicemia that may lead to death in 20% to 50% of cases. Rapid detection of infection is crucial for timely treatment of septic patients. This study evaluated seven commercially available DNA extraction kits to determine the relative recovery of DNA from spiked EDTA-containing human whole blood. The evaluation included three manual kits: the QIAamp DNA Mini kit, the QIAamp DNA Blood Mini kit, and the High Pure PCR Template Preparation kit; and four automated systems: the MagNAPure LC using the DNA Isolation Kit I, the MagNAPure Compact using the Nucleic Acid Isolation Kit I, and the QIAcube using the QIAamp DNA Mini kit and the QIAamp DNA Blood Mini kit. Detection of DNA extracted by each kit was performed using the specific type III secretion real-time PCR (TTS1) assay. Crossing threshold (C ) values were used to compare the limit of detection and reproducibility of each kit. This study also compared the DNA concentrations and DNA purity yielded for each kit. The following kits consistently yielded DNA that produced a detectable signal from blood spiked with 5.5×10 colony forming units per mL: the High Pure PCR Template Preparation, QIAamp DNA Mini, MagNA Pure Compact, and the QIAcube running the QIAamp DNA Mini and QIAamp DNA Blood Mini kits. The High Pure PCR Template Preparation kit yielded the lowest limit of detection with spiked blood, but when this kit was used with blood from patients with confirmed cases of melioidosis, the bacteria was not reliably detected indicating blood may not be an optimal specimen.

Concepts: DNA, Polymerase chain reaction, Molecular biology, Laboratory techniques, Burkholderia mallei, Burkholderia, Burkholderia pseudomallei, Melioidosis


Burkholderia pseudomallei is a Gram-negative environmental bacterium found in tropical climates that causes melioidosis. Culture remains the diagnostic gold standard, but isolation of B. pseudomallei from heavily contaminated sites, such as fecal specimens, can be difficult. We recently reported that B. pseudomallei is capable of infecting the gastrointestinal tract of mice and suggested that the same may be true in humans. Thus, there is a strong need for new culture techniques to allow for efficient detection of B. pseudomallei in fecal and other specimens. We found that the addition of norfloxacin, ampicillin, and polymyxin B to Ashdown’s medium (NAP-A) resulted in increased specificity without affecting the growth of 25 B. pseudomallei strains. Furthermore, recovery of B. pseudomallei from human clinical specimens was not affected by the three additional antibiotics. Therefore, we conclude that NAP-A medium provides a new tool for more sensitive isolation of B. pseudomallei from heavily contaminated sites.

Concepts: Bacteria, Burkholderia mallei, Burkholderia, Burkholderia pseudomallei, Chloramphenicol, Melioidosis, Burkholderia thailandensis, Ashdown's medium


Matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) sample preparation methods including the direct, on-plate formic acid, and ethanol/formic acid tube extraction were evaluated for their ability to render highly pathogenic organisms non-viable and safe for handling in a Biosafety Level-2 laboratory. Of these, the tube extraction procedure was the most successful, with none of the tested strains surviving this sample preparation method. Tube extracts from several agents of bioterrorism and their near neighbors were analyzed in an eight laboratory study to examine the utility of the Bruker Biotyper and Vitek MS MALDI-TOF MS systems and their IVD, research use only, and Security-Relevant databases, as applicable, to accurately identify these agents. Forty-six distinct strains of Bacillus anthracis, Yersinia pestis, Francisella tularensis, Burkholderia mallei, Burkholderia pseudomallei, Clostridium botulinum, Brucella melitensis, Brucella abortus, Brucella suis, and Brucella canis were extracted and distributed to participating labs for analysis. A total of 35 near neighbor isolates were also analyzed.

Concepts: Bacteria, Mass spectrometry, Brucellosis, Burkholderia mallei, Burkholderia, Brucella, Burkholderia pseudomallei


Chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) formulations are frequently used as antiseptics in healthcare and consumer products. Burkholderia cepacia complex (BCC) contamination of pharmaceutical products could be due to the use of contaminated water in the manufacturing process, over-diluted antiseptic solutions in the product, and the use of outdated products, which in turn, reduces the antimicrobial activity of CHX and BZK. To establish a “safe use” period following opening containers of CHX and BZK, we measured the antimicrobial effects of CHX (2 ~ 10 µg/ml) and BZK (10 ~ 50 µg/ml) at sub-lethal concentrations on six strains of Burkholderia cenocepacia using chemical and microbiological assays. CHX (2, 4 and 10 µg/ml) and BZK (10, 20 and 50 µg/ml) stored for 42 days at 23°C showed almost the same concentration and toxicity compared to freshly prepared CHX and BZK on B. cenocepacia strains. When 5 µg/ml CHX and 20 µg/ml BZK were spiked with six B. cenocepacia strains with different inoculum sizes (10⁰ ~ 10⁵CFU/mL), their toxic effects were not changed for 28 days. B. cenocepacia strains in diluted CHX and BZK were detectable at concentration up to 10² CFU/mL after incubation for 28 days at 23°C. Although abiotic and biotic changes in the toxicity of both antiseptics were not observed, our results indicate that B. cenocepacia strains could remain viable in CHX and BZK for 28 days, which in turn, indicates the importance of control measures to monitor BCC contamination in pharmaceutical products.

Concepts: Microbiology, Antiseptic, Toxicity, Disinfectant, Burkholderia, Burkholderiales, Mouthwash, Antiseptics


BACKGROUND: Lung function is an important indicator of cystic fibrosis disease status and those with better forced expiratory volume in 1 s (FEV(1))% predicted have tended to report a better health-related quality of life (HRQoL) in cross-sectional studies. The relationship between lung function and HRQoL over time is unknown. This work assesses the natural progression of HRQoL reporting over many years and compares assessments across a whole decade and evaluates the relationship between lung function and HRQoL longitudinally. METHODS: Demographic (age, gender), clinical (FEV(1)% predicted, body mass index, diabetes, Burkholderia cepacia complex, intravenous access device and nutritional status) and HRQoL (Cystic Fibrosis Quality of Life Questionnaire) variables were obtained every 2 years over a 12-year period (seven time points from 1998 to 2010). RESULTS: HRQoL and lung function declined slowly over time and significant decade changes were observed for FEV(1)% predicted and the nine domains of the Cystic Fibrosis Quality of Life Questionnaire. The results of random coefficient modelling indicated that, at the population level, decreasing FEV(1)% predicted was associated with decreasing HRQoL after adjusting for confounding variables. However, the percentage of patients for whom a decrease in lung function was associated with a decrease in HRQoL differed according to the quality of life domain. CONCLUSIONS: HRQoL and FEV(1)% predicted decline slowly; nevertheless, a decrease in lung function predicted a decrease in HRQoL over time.

Concepts: Pulmonology, Respiratory physiology, Cystic fibrosis, Body mass index, Pulmonary fibrosis, Spirometry, Burkholderia, Burkholderia cepacia complex


The present study was conducted to establish a Loop-mediated isothermal amplification (LAMP) technique for the rapid detection of B. mallei the etiologic agent of glanders, a highly contagious disease of equines. A set of six specific primers targeting integrase gene cluster were designed for the LAMP test. The reaction was optimized using different temperatures and time intervals. The specificity of the assay was evaluated using DNA from B.pseudomallei and Pseudomonas aeruginosa. The LAMP products were analyzed both visually and under UV light after electrophoresis. The optimized conditions were found to be at 63ºC for 60 min. The assay showed high specificity and sensitivity. It was concluded that the established LAMP assay is a rapid, sensitive and practical tool for detection of B. mallei and early diagnosis of glanders.

Concepts: DNA, Time, Infectious disease, Type I and type II errors, Sensitivity and specificity, Pseudomonas aeruginosa, Burkholderia mallei, Burkholderia


Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, Burkholderia sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, recA, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name Burkholderia puraquae sp. nov. is proposed. Burkholderia puraquae sp. nov. CAMPA 1040(T) (=LMG 29660(T)=DSM 103137(T)) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from recA gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and β-galactosidase activities.

Concepts: DNA, Gene, Mass spectrometry, Microbiology, RNA, Base pair, Cystic fibrosis, Burkholderia


The lipase from Burkholderia cepacia, formerly known as Pseudomonas cepacia lipase, is a commercial enzyme in both soluble and immobilized forms widely recognized for its thermal resistance and tolerance to a large number of solvents and short-chain alcohols. The main applications of this lipase are in transesterification reactions and in the synthesis of drugs (because of the properties mentioned above). This review intends to show the features of this enzyme and some of the most relevant aspects of its use in different synthesis reactions. Also, different immobilization techniques together with the effect of various compounds on lipase activity are presented. This lipase shows important advantages over other lipases, especially in reaction media including solvents or reactions involving short-chain alcohols. This article is protected by copyright. All rights reserved.

Concepts: Alcohol, Enzyme, Chemical reaction, Lipase, All rights reserved, Burkholderia, Burkholderiales, Copyright