Concept: Bulk density
171
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching.
139
Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals
- OPEN
- Nature communications
- Published over 3 years ago
- Discuss
Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 10(15) cm(-3), only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals.
104
Effects of porosity on dynamic indentation resistance of silica nanofoam
- OPEN
- Scientific reports
- Published almost 4 years ago
- Discuss
The dynamic indentation behaviors of monolithic silica nanofoams of various porosities are investigated. When the pore size is on the nm scale, as the porosity increases, despite the decrease in mass density, the resistance offered by silica nanofoam to dynamic indentation is maintained at a high level, higher than the resistance of solid silica or regular porous silica. This phenomenon is related to the fast collapse of nanocells, which produces a locally hardened region and significantly increases the volume of material involved in impact energy dissipation.
47
The formation of peak rings in large impact craters
- Science (New York, N.Y.)
- Published about 4 years ago
- Discuss
Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.
28
Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column
- Water research
- Published about 8 years ago
- Discuss
The design of an efficient field-scale remediation based on the use of nanoscale zero valent iron (NZVI) requires an accurate assessment of the mobility of such particles in saturated porous media, both during injection in the subsurface (short-term mobility) and later (long-term mobility). In this study, the mobility of highly concentrated dispersions of bimetallic Fe/Cu nanoparticles (d(50) = 70 ± 5 nm) in sand-packed columns (0.5 m length and 0.025 m inner diameter) was studied. In particular, the influence of flow rate (V = 5 × 10(-4), 1 × 10(-3), 2 × 10(-3) m/s) and injected particle concentrations (2, 5, 8, 12 g/l) was addressed. Breakthrough curves and water pressure drop along the column, averaged effective porosity and final distribution of retained particles along the column were measured. Experimental results evidenced a good mobility of the Fe/Cu particles, with significant breakthrough in all explored experimental conditions of flow rate and C(0), without requiring the addition of any stabilizing agent. Clogging phenomenon of the column and also the pore pressure variation during injection period are strongly affected by injected concentration. Clogging due to deposition of particles following a ripening dynamics was observed in particular for C(0) = 8 and 12 g/l. The experimental data were modeled using the E-MNM1D software. The study has implications for field injection of bimetallic nanoparticles, suggesting that particular care is to be devoted when selecting injection concentration, to avoid porous medium clogging and control the radius of influence.
28
Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.
- Advances in colloid and interface science
- Published over 8 years ago
- Discuss
The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out.
27
High Sulfur Loading Cathodes Fabricated Using Peapod-like, Large Pore Volume Mesoporous Carbon for Lithium-Sulfur Battery
- ACS applied materials & interfaces
- Published almost 8 years ago
- Discuss
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapod-like mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm3 g-1) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt%, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li+ insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li+ transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapod-like carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
27
Real-Time Particle Size Analysis Using Focused Beam Reflectance Measurement as a Process Analytical Technology Tool for a Continuous Granulation-Drying-Milling Process
- AAPS PharmSciTech
- Published almost 8 years ago
- Discuss
Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R (2) of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650-850 rpm) and Comil® impeller speed (1,000-2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).
25
Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.)
- Journal of food science and technology
- Published almost 6 years ago
- Discuss
Some physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.) were investigated. These characteristics are necessary for the design of equipments for harvesting, processing, transportation, sorting, separating and packing. The fruit length, diameter, geometric and arithmetic mean diameters, sphericity, surface area, projected areas (vertical-horizontal) and aspect ratio of goldenberries were determined as 17.52 mm, 17.31 mm, 17.33 mm, 17.38 mm, 98.9 %, 0.949 cm(2), 388.67-387.85 mm(2) and 0.988, respectively. The mass of fruit, bulk density, fruit density, porosity and fruit hardness were 3.091 g, 997.3 kg/m(3), 462.3 kg/m(3), 53.61 % and 8.01 N, respectively. The highest static coefficient of friction was observed on rubber surface, followed by stainless steel sheet, aluminum sheet, and plywood materials. The dry matter, water soluble dry matter, ash, protein, oil, carbohydrate, titratable acidity, pH, total sugar, reducing sugar, antioxidant capacity were 18.67 %, 14.17 %, 2.98 %, 1.66 %, 0.18 %, 13.86 %, 1.26 %, 6.07, 63.90 g/kg, 31.99 g/kg and 57.67 %, respectively. The fresh fruits have 145.22 mg gallic acid equivalent (GAE)/100 g total phenol content and skin colour data represented as L*, a*, b*, Chroma © and Hue angle (α) were 49.92, 25.11, 50.23, 56.12 and 63.48, respectively.
24
Combustion of thermochemically torrefied sugar cane bagasse
- Bioresource technology
- Published about 4 years ago
- Discuss
This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m(3), increased HHVmass and HHVvolume, greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel.