SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Buformin

27

Hyperglycemia during corticosteroid and asparaginase therapy for acute lymphoblastic leukemia is a significant side effect that is usually treated with insulin. Metformin is an oral antidiabetic biguanide that may cause metabolic acidosis and liver enzyme abnormalities of possible concern in patients receiving chemotherapy.

Concepts: Diabetes mellitus, Glycogen, Anti-diabetic drug, Metformin, Acute lymphoblastic leukemia, Anti-diabetic drugs, Phenformin, Buformin

24

Metformin (N,N-dimethylbiguanide), buformin (1-butylbiguanide) and phenformin (1-phenethylbiguanide) are anti-diabetic biguanide drugs, expected to having anti-cancer effect. The mechanism of anti-cancer effect by these drugs is not completely understood. In this study, we demonstrated that these drugs dramatically enhanced oxidative DNA damage under oxidative condition. Metformin, buformin and phenformin enhanced generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in isolated DNA reacted with hydrogen peroxide (H2O2) and Cu(II), although these drugs did not form 8-oxodG in the absence of H2O2 or Cu(II). An electron paramagnetic resonance (EPR) study, utilizing alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide as spin trapping agents, showed that nitrogen-centered radicals were generated from biguanides in the presence of Cu(II) and H2O2, and that these radicals were decreased by the addition of DNA. These results suggest that biguanides enhance Cu(II)/H2O2 -mediated 8-oxodG generation via nitrogen-centered radical formation. The enhancing effect on oxidative DNA damage may play a role on anti-cancer activity.

Concepts: Oxygen, Oxidative stress, Hydrogen peroxide, Anti-diabetic drug, Metformin, Biguanide, Phenformin, Buformin

1

Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine.

Concepts: Pharmacology, Effectiveness, Anti-diabetic drug, Metformin, Pioglitazone, Anti-diabetic drugs, Phenformin, Buformin

0

A new salting-out assisted liquid-liquid extraction (SALLE) sample preparation method for the determination of the polar anti-diabetic biguanide drugs (metformin, buformin and phenformin) in blood plasma, urine and lake water samples were developed. The SALLE was performed by mixing samples (plasma (0.2mL), urine or lake water (1.0mL)) with acetonitrile (0.4mL for plasma, 0.5mL for urine or lake water), sodium hydroxide powder was then added for the phase separation. The effects of type of salting-out reagent, type of extraction solvent, volumes of acetonitrile and sample, amount of sodium hydroxide, vortexing and centrifugation times on the extraction efficiency were investigated. The upper layer, containing the biguanides, was directly injected into a HPLC unit using ZIC-HILIC column (150mm×2.1mm×3.5μm) and was detected at 236nm. The method was validated and calibration curves were linear with r2>0.99 over the range of 20-2000μgL-1 for plasma and 5-2000μgL-1 for urine and lake water samples. The limits of detection were in the range (3.8-5.6)μgL-1, (0.8-1.5)μgL-1 and (0.3-0.8)μgL-1 for plasma, urine and lake water, respectively. The accuracies in the three matrices were within 87.3-103%, 87.4-109%, 82.2-109% of the nominal concentration for metformin, buformin and phenformin, respectively. The relative standard deviation for inter- and intra -day precision were in the range of 1.0-17% for all analytes in the three matrices.

Concepts: Ethanol, Anti-diabetic drug, Metformin, Sodium, Sodium hydroxide, Biguanide, Phenformin, Buformin

0

Targeted therapies and immunotherapies have significantly improved the prognosis of patients with advanced melanoma (Long et al., 2015; Robert et al., 2015a; Robert et al., 2015b; Ascierto et al., 2015). Unfortunately, treatment failure due to primary and secondary drug resistance are still observed and therefore there is an urgent need to identify new anti-melanoma agents. The oral anti-diabetic drug metformin belongs to the family of biguanides and it is the most widely used antidiabetic drug in the world. This article is protected by copyright. All rights reserved.

Concepts: Anti-diabetic drug, Metformin, Pioglitazone, Anti-diabetic drugs, Phenformin, Buformin

0

A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r(2)>0.99 over the range of 20-2000µgL(-1). The limits of detection and quantitation were 1.4 and 4.1µgL(-1), respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples.

Concepts: Electrochemistry, Chemistry, Analytical chemistry, Anti-diabetic drug, Metformin, Solution, Hydrochloric acid, Buformin

0

Carnitine/organic cation transporter 1 (OCTN1) is involved in gastrointestinal absorption and mitochondrial toxicity of biguanides in rodents, but its pharmacokinetic roles in humans are largely unknown. The purpose of this study was to clarify the transport activities of two major OCTN1 variants, L503F and I306T, for gabapentin and three biguanide drugs, metformin, buformin and phenformin.

Concepts: Metformin, Transport, Biguanide, Phenformin, Buformin