SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Buffer solution

171

Agricultural soils represent the main source of anthropogenic N2O emissions. Recently, interactions of black carbon with the nitrogen cycle have been recognized and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms of reduction remain unclear. Here we demonstrate the significant impact of biochar on denitrification, with a consistent decrease in N2O emissions by 10-90% in 14 different agricultural soils. Using the (15)N gas-flux method we observed a consistent reduction of the N2O/(N2 + N2O) ratio, which demonstrates that biochar facilitates the last step of denitrification. Biochar acid buffer capacity was identified as an important aspect for mitigation that was not primarily caused by a pH shift in soil. We propose the function of biochar as an “electron shuttle” that facilitates the transfer of electrons to soil denitrifying microorganisms, which together with its liming effect would promote the reduction of N2O to N2.

Concepts: Carbon dioxide, Metabolism, Nitrogen, PH, Buffer solution, Bioremediation, Denitrification, Nitrogen cycle

171

The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS)-iron oxide nanoparticles (IONPs) composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA) was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS) for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

Concepts: Enzyme, PH, Composite material, Buffer solution, Enzymes, Immobilized enzyme, Epoxy, Composite video

167

Background and the purpose of the study: Rizatriptan is used effectively for the treatment of migraine headache. In this study, a simple, rapid and low cost spectrophotometric method based on the ion-pair complexation is proposed for the determination of rizatriptan in raw material and dosage forms. METHODS: The ion-pair complexation using bromocresol green as reagent was performed in a buffer solution and the absorbance was measured by a spectrophotometer. The ion-pair formation conditions were optimized and the accuracy and precision of the method were calculated.Results and major conclusion: Best results were achieved by using 6 ml of the bromocresol green reagent in the presence of phosphate buffer (pH 3.0). The stoichiometry of the resulted complex was 1:1. The within-day and between-day precision values were lower than 2.9 and 1.8 percent for the calibration range of 0.5–50 and 10–100 mug/ml, respectively. The proposed method was successfully used for the determination of rizatriptan in dosage forms without any interference.

Concepts: Spectroscopy, Chemical equilibrium, PH, Phosphate buffered saline, Accuracy and precision, Buffer solution, Equilibrium chemistry, Spectrophotometry

153

Sequencing-based studies of the human faecal microbiota are increasingly common. Appropriate storage of sample material is essential to avoid the introduction of post-collection bias in microbial community composition. Rapid freezing to -80 °C is commonly considered to be best-practice. However, this is not feasible in many studies, particularly those involving sample collection in participants' homes. We determined the extent to which a range of stabilisation and storage strategies maintained the composition of faecal microbial community structure relative to freezing to -80 °C. Refrigeration at 4 °C, storage at ambient temperature, and the use of several common preservative buffers (RNAlater, OMNIgene.GUT, Tris-EDTA) were assessed relative to freezing. Following 72 hours of storage, faecal microbial composition was assessed by 16 S rRNA amplicon sequencing. Refrigeration was associated with no significant alteration in faecal microbiota diversity or composition. However, samples stored using other conditions showed substantial divergence compared to -80 °C control samples. Aside from refrigeration, the use of OMNIgene.GUT resulted in the least alteration, while the greatest change was seen in samples stored in Tris-EDTA buffer. The commercially available OMNIgene.GUT kit may provide an important alternative where refrigeration and cold chain transportation is not available.

Concepts: Sample, Archaea, Buffer solution, Buffering agent, Food preservation, Buffer, Storage

139

This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children.

Concepts: In vivo, Milk, Buffer solution, Oral hygiene, Chewing gum, Gum, Gum base

67

The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine.

Concepts: Nutrition, Effect, Acid dissociation constant, PH, Paresthesia, Effects unit, Buffer solution, Buffering agent

32

Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet-dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes.

Concepts: Climate, Weather, Climate change, Vegetation, Buffer solution, Buffer, Solar variation, Global warming

30

Although short (up to 3 days) exposure to major shifts in macronutrient intake appears to alter acid-base status, the effects of sustained (>1 week) interventions in elite athletes has not been determined. Using a non-randomized, parallel design, we examined the effect of adaptations to 21 days of a ketogenic low carbohydrate high fat (LCHF) or periodized carbohydrate (PCHO) diet on pre- and post-exercise blood pH, and concentrations of bicarbonate (HCO₃-) and lactate (La-) in comparison to a high carbohydrate (HCHO) control. Twenty-four (17 male and 7 female) elite-level race walkers completed 21 days of either LCHF (n = 9), PCHO (n = 7), or HCHO (n = 8) under controlled diet and training conditions. At baseline and post-intervention, blood pH, blood [HCO₃-], and blood [La-] were measured before and after a graded exercise test. Net endogenous acid production (NEAP) over the previous 48-72 h was also calculated from monitored dietary intake. LCHF was not associated with significant differences in blood pH, [HCO₃-], or [La-], compared with the HCHO diet pre- or post-exercise, despite a significantly higher NEAP (mEq·day-1) (95% CI = [10.44; 36.04]). Our results indicate that chronic dietary interventions are unlikely to influence acid-base status in elite athletes, which may be due to pre-existing training adaptations, such as an enhanced buffering capacity, or the actions of respiratory and renal pathways, which have a greater influence on regulation of acid-base status than nutritional intake.

Concepts: Protein, Metabolism, Nutrition, Blood, Fat, Diet, Buffer solution, Ketogenic diet

28

BACKGROUND:: Patients with Celiac Disease (CD) have a wide variety of symptoms, from being asymptomatic to having chronic diarrhea, abdominal pain and extra-intestinal symptoms. In the oral cavity, enamel defects and recurrent aphthous stomatitis are the most common symptoms. AIM:: To assess oral health, bacterial colonization and salivary buffering capacity of patients with CD at diagnosis were compared with CD patients on gluten free diet (GFD) and healthy children. METHODS:: Three groups were prospectively investigated: newly diagnosed celiac disease, celiac disease treated with GFD and a control group. All children were examined by pediatric dentists and saliva samples were collected for bacterial and pH analysis. RESULT:: Ninety children were enrolled in the study, thirty in each group. A higher prevalence of enamel hypoplasia (66%) was found in celiac children. Plaque Index was significantly lower in the celiac treated group, which correlated with oral health behavior: teeth brushing and frequency of eating between meals. Children on GFD brushed their teeth and used fluoride significantly more often than other children in the study. No difference between groups was found in snacks consumption, Mutans Streptococci and Lactobacilli counts in saliva, as well as pH and buffer capacity, CONCLUSIONS:: A lower degree of plaque was found in celiac children on GFD. This finding could not be explained by salivary properties or bacteria, but rather by better oral hygiene. The results should raise the awareness of pediatric gastroenterologists to oral health related issues in children with CD.

Concepts: Bacteria, Wheat, Crohn's disease, Buffer solution, Coeliac disease, Gluten, Aphthous ulcer, Gluten-free diet

28

Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/ml exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/ml. At a protein concentration of 220 mg/ml, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 4°C, 25°C and 40°C. Changes in ionic strength of ΔI = 0.15, in contrast, can alter the buffer capacity up to 35 %. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 2013.

Concepts: Protein, Acid, Chemistry, Acid dissociation constant, PH, Buffer solution, Buffering agent, Salt