Discover the most talked about and latest scientific content & concepts.

Concept: Brugia timori


Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.

Concepts: Model organism, Diethylcarbamazine, Filariasis, Neglected diseases, Brugia timori, Hookworm, Elephantiasis, Onchocerciasis


Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83-99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25-22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20-17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity.

Concepts: Disease, Bacteria, Evolution, Malaria, Diethylcarbamazine, Filariasis, Brugia timori, Wuchereria bancrofti


Lymphatic filariasis (LF) is a leading cause of morbidity in the tropical world. It is caused by the filarial parasites Wuchereria bancrofti, Brugia malayi and Brugia timori and transmitted by vector mosquitoes. Currently a programme for the elimination of LF, Global Lympahtic Filariasis Elimination Programme (GPELF), is underway with the strategy of mass administration of single dose of diethylcarbamazine or ivermectin, in combination with an antihelminthic drug, albendazole. However, antifilarial drugs used in the progarmme are only microfilaricidal but not or only partially macrofilaricidal. Hence, there is a need to identify new targets for developing antifilarial drugs. Filarial parasites harbour rickettsial endosymbionts, Wolbachia sp., which play an important role in their biology and hence are considered as potential targets for antifilarial chemotherapy development. In this study, one of the cell division proteins of Wolbachia of the major lymphatic filarial parasite, Wuchereria bancrofti, viz., filamentation temperature-sensitive protein Z (FtsZ), was explored as a drug target. The gene coding for FtsZ protein was amplified from the genomic DNA of W. bancrofti, cloned and sequenced. The derived amino acid sequence of the gene revealed that FtsZ protein is 396 amino acids long and contained the tubulin motif (GGGTGTG) involved in GTP binding and the GTP hydrolyzing motif (NLDFAD). The FtsZ gene of endosymbiont showed limited sequence homology, but exhibited functional homology with β-tubulin of its host, W. bancrofti, as it had both the functional motifs and conserved amino acids that are critical for enzymatic activity. β-tubulin is the target for the anti-helminthic activity of albendazole and since FtsZ shares the functional homology with it may also be sensitive to albendazole. Therefore, the effect of albendazole was tested against Wolbachia occurring in mosquitoes instead of filarial parasites as the drug has lethal effect on the latter. Third instar larvae of Culex quinquefasciatus were treated with 0.25mg/ml of albendazole (test) or tetracycline (positive control) in the rearing medium for different intervals and tested for the presence of Wolbachia by FtsZ PCR. All the treated larvae were negative for the presence of the FtsZ band, whereas all the control larvae were positive. The findings of the study thus indicated that FtsZ is sensitive to albendazole. In view of this albendazole appears to have dual targets; FtsZ in Wolbachia and β- tubulin in W. bancrofti. Further, the functional domain of the gene was assessed for polymorphism among recombinant clones representing 120W. bancrofti parasites, prevalent across wide geographic areas of India and found to be highly conserved among them. Since it is highly conserved and plays an important role in Wolbachia cell division it appears to be a potential target for anti-filarial chemotherapy development.

Concepts: DNA, Protein, Amino acid, Diethylcarbamazine, Filariasis, Brugia timori, Brugia malayi, Wuchereria bancrofti


The therapeutic effects of a controlled parasitic nematode infection on the course of inflammatory bowel disease (IBD) have been demonstrated in both animal and human models. However the inability of individual well characterized nematode proteins to recreate these beneficial effects has limited the application of component immunotherapy to human disease. The nematodes that cause chronic human lymphatic filariasis, Brugia malayi and Wuchereria bancrofti, are among the parasites that induce immune suppression. Filarial lymphatic pathology has been shown to involve NFk B pathway dependent production of vascular endothelial growth factor (VEGF), and stimulation of VEGF expression has also been reported by interleukin 8 (IL8) via NFkB pathways. Previously we have shown that the filarial asparaginyl-tRNA synthetase (rBmAsnRS) interacts with IL8 receptors using a combination of extracellular loops that differ from those bound by IL8. To test the hypothesis that rBmAsnRS might induce an anti-inflammatory effect in vivo, we studied the effects of rBmAsnRS in an established murine colitis model using T-cell transfer mice. T cell transfer colitis mice treated intraperitoneally with 100 μg of rBmAsnRS four times over two weeks, showed resolution of cellular infiltration in the colonic mucosa, along with induction of a CD8(+) cellular response. In addition, rBmAsnrs induced a rise in IL10 production from CD3+, LPS- and CPG-stimulated splenic cells. In summary, this work demonstrates a novel anti-inflammatory nematode protein, supports the Hygiene Hypothesis and supports continued refinement of alternative immunotherapies for treatment of IBD.

Concepts: Immune system, Inflammation, Ulcerative colitis, Inflammatory bowel disease, Nematodes, Diethylcarbamazine, Filariasis, Brugia timori


Lymphatic filariasis is caused by three closely related nematode parasites: Wuchereria bancrofti, Brugia malayi and Brugia timori. These species have many ecological variants that differ in several aspects of their biology such as mosquito vector species, host range, periodicity, and morphology. Although the genome of B. malayi (the first genome sequenced from a parasitic nematode) has been available for more than five years, very little is known about genetic variability among the lymphatic dwelling filariae. The genetic diversity among these worms is not only interesting from a biological perspective, but it may have important practical implications for the Global Program to Eliminate Lymphatic Filariasis, as the parasites may respond differently to diagnostic tests and/or medical interventions. Therefore, better information on their genetic variability is urgently needed. With improved methods for nucleic acid extraction and recent advances in sequencing chemistry and instrumentation, this gap can be filled relatively inexpensively. Improved information on filarial genetic diversity may increase the chances of success for lymphatic filariasis elimination programs.

Concepts: Malaria, Nematodes, Vector, Diethylcarbamazine, Filariasis, Brugia timori, Brugia malayi, Wuchereria bancrofti


SUMMARY Brugia malayi is one of the parasitic worms which causes lymphatic filariasis in humans. Its geographical distribution includes a large part of Asia. Despite its wide distribution, very little is known about the genetic variation and molecular epidemiology of this species. In this study, the internal transcribed spacer 1 (ITS1) nucleotide sequences of B. malayi from microfilaria-positive human blood samples in Northeast Borneo Island were determined, and compared with published ITS1 sequences of B. malayi isolated from cats and humans in Thailand. Multiple alignment analysis revealed that B. malayi ITS1 sequences from Northeast Borneo were more similar to each other than to those from Thailand. Phylogenetic trees inferred using Neighbour-Joining and Maximum Parsimony methods showed similar topology, with 2 distinct B. malayi clusters. The first cluster consisted of Northeast Borneo B. malayi isolates, whereas the second consisted of the Thailand isolates. The findings of this study suggest that B. malayi in Borneo Island has diverged significantly from those of mainland Asia, and this has implications for the diagnosis of B. malayi infection across the region using ITS1-based molecular techniques.

Concepts: DNA, Species, Sequence, Phylogenetic tree, Phylogenetics, Diethylcarbamazine, Brugia timori, Brugia malayi


Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18-24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks.

Concepts: Nematodes, Diethylcarbamazine, Filariasis, Neglected diseases, Brugia timori, Brugia malayi, Wuchereria bancrofti, Elephantiasis


Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis.

Concepts: Bacteria, Nematode, Diethylcarbamazine, Filariasis, Doxycycline, Brugia timori, Brugia malayi, Parthenogenesis


Understanding vector-parasite interactions is increasingly important as we move towards the endpoint goals set by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF), as interaction dynamics may change with reduced transmission pressure. Elimination models used to predict programmatic endpoints include parameters for vector-specific transmission dynamics, despite the fact that our knowledge of the host-seeking behaviour of filariasis infected mosquitoes is lacking. We observed a dynamic, stage-specific and density dependent change in Aedes aegypti behaviour towards host cues when exposed to Brugia malayi filarial parasites. Infected mosquitoes exhibited reduced activation and flight towards a host during the period of larval development (L1/L2), transitioning to a 5 fold increase in activation and flight towards a host when infective stage larvae (L3) were present (p < 0.001). In uninfected control mosquitoes, we observed a reduction in convergence towards a host during the same period. Furthermore, this behaviour was density dependent with non-activated mosquitoes harbouring a greater burden of L1 and L2 larvae while activated mosquitoes harboured a greater number of L3 (p < 0.001). Reductions in fecundity were also density-dependent, and extended to mosquitoes that were exposed to microfilariae but did not support larval development.

Concepts: Malaria, Mosquito, Aedes, Vector, Diethylcarbamazine, Filariasis, Brugia timori, Microfilaria


Once interruption of transmission of lymphatic filariasis is achieved, morbidity prevention and management becomes more important. A study in Brugia malayi filariasis from India has shown sub-clinical lymphatic pathology with potential reversibility. We studied a Wuchereria bancrofti infected population, the major contributor to LF globally.

Concepts: Diethylcarbamazine, Filariasis, Brugia timori, Brugia malayi, Wuchereria bancrofti, Insect-borne diseases, Elephantiasis, Onchocercidae