SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Brook trout

169

The freshwater bryozoan Fredericella sultana (Blumenbach) is the most common invertebrate host of the myxozoan parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish. Culture media play an important role in hatching of statoblasts and maintaining clean bryozoan colonies for Malacosporea research. We developed a novel culture medium, Bryozoan Medium C (BMC), for the cultivation and maintenance of F. sultana under laboratory conditions. Statoblasts of F. sultana were successfully hatched to produce transparent-walled, specific pathogen-free (SPF) colonies that were maintained >12 months in BMC at pH 6.65. Tetracapsuloides bryosalmonae was successfully transmitted from infected brown trout, Salmo trutta L., to newly hatched F. sultana colonies in BMC, then from the infected bryozoan to SPF brown trout. This study demonstrated the utility of BMC (pH 6.65) for hatching statoblasts, long-term cultivation of clean and transparent bryozoan colonies and maintenance of the Tetracapsuloides bryosalmonae life cycle in the laboratory for molecular genetic research and other studies such as host-parasiteinteraction.

Concepts: Fish, Salmo, Rainbow trout, Brown trout, Brook trout, Myxozoa, Tetracapsuloides bryosalmonae, Myxobolus cerebralis

169

Early juvenile growth is a good indicator of growth later in life in many species because larger than average juveniles tend to have a competitive advantage. However, for migratory species the relationship between juvenile and adult growth remains obscure. We used scale analysis to reconstruct growth trajectories of migratory sea trout (Salmo trutta) from six neighbouring populations, and compared the size individuals attained in freshwater (before migration) with their subsequent growth at sea (after migration). We also calculated the coefficient of variation (CV) to examine how much body size varied across populations and life stages. Specifically, we tested the hypothesis that the CV on body size would differ between freshwater and marine environment, perhaps reflecting different trade-offs during ontogeny. Neighbouring sea trout populations differed significantly in time spent at sea and in age-adjusted size of returning adults, but not on size of seaward migration, which was surprisingly uniform and may be indicative of strong selection pressures. The CV on body size decreased significantly over time and was highest during the first 8 months of life (when juvenile mortality is highest) and lowest during the marine phase. Size attained in freshwater was negatively related to growth during the first marine growing season, suggesting the existence of compensatory growth, whereby individuals that grow poorly in freshwater are able to catch up later at sea. Analysis of 61 datasets indicates that negative or no associations between pre- and post-migratory growth are common amongst migratory salmonids. We suggest that despite a widespread selective advantage of large body size in freshwater, freshwater growth is a poor predictor of final body size amongst migratory fish because selection may favour growth heterochrony during transitions to a novel environment, and marine compensatory growth may negate any initial size advantage acquired in freshwater.

Concepts: Natural selection, Fish, Oceanography, Ocean, Salmo, Rainbow trout, Brown trout, Brook trout

29

Gill disease in salmonids is characterized by a multifactorial aetiology. Epitheliocystis of the gill lamellae caused by obligate intracellular bacteria of the order Chlamydiales is one known factor; however, their diversity has greatly complicated analyses to establish a causal relationship. In addition, tracing infections to a potential environmental source is currently impossible. In this study, we address these questions by investigating a wild brown trout (Salmo trutta) population from seven different sites within a Swiss river system. One age class of fish was followed over 18 months. Epitheliocystis occurred in a site-specific pattern, associated with peak water temperatures during summer months. No evidence of a persistent infection was found within the brown trout population, implying an as yet unknown environmental source. For the first time, we detected ‘Candidatus Piscichlamydia salmonis’ and ‘Candidatus Clavochlamydia salmonicola’ infections in the same salmonid population, including dual infections within the same fish. These organisms are strongly implicated in gill disease of caged Atlantic salmon in Norway and Ireland. The absence of aquaculture production within this river system and the distance from the sea, suggests a freshwater origin for both these bacteria and offers new possibilities to explore their ecology free from aquaculture influences.

Concepts: Causality, Fish, Salmon, Salmonidae, Salmo, Trout, Brown trout, Brook trout

7

Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush) ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus). Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2) per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2) per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.

Concepts: Salmon, Oncorhynchus, Salmonidae, Lake Superior, Great Lakes, Salvelinus, Brook trout, Lake trout

5

We conducted a large-scale assessment of unconventional oil and gas (UOG) development effects on brook trout (Salvelinus fontinalis) distribution. We compiled 2231 brook trout collection records from the Upper Susquehanna River Watershed, USA. We used boosted regression tree (BRT) analysis to predict occurrence probability at the 1:24,000 stream-segment scale as a function of natural and anthropogenic landscape and climatic attributes. We then evaluated the importance of landscape context (i.e., pre-existing natural habitat quality and anthropogenic degradation) in modulating the effects of UOG on brook trout distribution under UOG development scenarios. BRT made use of 5 anthropogenic (28% relative influence) and 7 natural (72% relative influence) variables to model occurrence with a high degree of accuracy [Area Under the Receiver Operating Curve (AUC)=0.85 and cross-validated AUC=0.81]. UOG development impacted 11% (n=2784) of streams and resulted in a loss of predicted occurrence in 126 (4%). Most streams impacted by UOG had unsuitable underlying natural habitat quality (n=1220; 44%). Brook trout were predicted to be absent from an additional 26% (n=733) of streams due to pre-existing non-UOG land uses (i.e., agriculture, residential and commercial development, or historic mining). Streams with a predicted and observed (via existing pre- and post-disturbance fish sampling records) loss of occurrence due to UOG tended to have intermediate natural habitat quality and/or intermediate levels of non-UOG stress. Simulated development of permitted but undeveloped UOG wells (n=943) resulted in a loss of predicted occurrence in 27 additional streams. Loss of occurrence was strongly dependent upon landscape context, suggesting effects of current and future UOG development are likely most relevant in streams near the probability threshold due to pre-existing habitat degradation.

Concepts: Habitat, Salmonidae, Trout, Salvelinus, Brook trout, Habitat fragmentation, Lake trout, Habitat destruction

5

Stocking is a worldwide activity on geographical and historical scales. The rate of non-native fish introductions have more than doubled over the last decades yet the effect on natural ecosystems, in the scope of biologically mediated transport and biomagnification of Hg and Hg-isotopes, is unknown. Using geochemistry (THg) and stable isotopes (N, Sr and Hg), we evaluate natal origin and trophic position of brown trout (Salmo trutta fario), as well as mercury biomagnification trends and potential pollution sources to three high-altitude lakes. Farmed trout show Hg-isotope signatures similar to marine biota whereas wild trout shows Hg-isotope signatures typical of fresh water lakes. Stocked trout initially show Hg-isotope signatures similar to marine biota. As the stocked trout age and shifts diet to a higher trophic level, THg concentrations increase and the marine Hg isotope signatures, induced via farm fish feed, shift to locally produced MeHg with lower δ(202)Hg and higher Δ(199)Hg. We conclude that stocking acts a humanly induced biovector that transfers marine Hg to freshwater ecosystems, which is seen in the Hg-isotopic signature up to five years after stocking events occurred. This points to the need of further investigations of the role of stocking in MeHg exposure to freshwater ecosystems.

Concepts: Fish, Ecology, Lake, Freshwater, Salmo, Rainbow trout, Brown trout, Brook trout

5

Salmonids are native from the North Hemisphere but have been introduced for aquaculture and sport fishing in the South Hemisphere and inhabit most rivers and lakes in temperate and cold regions worldwide. Five species are included in the Global Invasive Species Database: rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar, brown trout Salmo trutta, brook trout Salvelinus fontinalis, and lake trout Salvelinus namaycush. In contrast, other salmonids are endangered in their native settings.

Concepts: Salmon, Salmonidae, Salmo, Rainbow trout, Trout, Brown trout, Salvelinus, Brook trout

5

Humans have exploited the earth’s metal resources for thousands of years leaving behind a legacy of toxic metal contamination and poor water quality. The southwest of England provides a well-defined example, with a rich history of metal mining dating to the Bronze Age. Mine water washout continues to negatively impact water quality across the region where brown trout (Salmo trutta L.) populations exist in both metal-impacted and relatively clean rivers. We used microsatellites to assess the genetic impact of mining practices on trout populations in this region. Our analyses demonstrated that metal-impacted trout populations have low genetic diversity and have experienced severe population declines. Metal-river trout populations are genetically distinct from clean-river populations, and also from one another, despite being geographically proximate. Using approximate Bayesian computation (ABC), we dated the origins of these genetic patterns to periods of intensive mining activity. The historical split of contemporary metal-impacted populations from clean-river fish dated to the Medieval period. Moreover, we observed two distinct genetic populations of trout within a single catchment and dated their divergence to the Industrial Revolution. Our investigation thus provides an evaluation of contemporary population genetics in showing how human-altered landscapes can change the genetic makeup of a species.

Concepts: Genetics, Biology, Fish, Middle Ages, Salmo, Rainbow trout, Brown trout, Brook trout

3

Salmonid fishes exhibit high levels of phenotypic and ecological variation and are thus ideal model systems for studying evolutionary processes of adaptive divergence and speciation. Furthermore, salmonids are of major interest in fisheries, aquaculture, and conservation research. Improving understanding of the genetic mechanisms underlying traits in these species would significantly progress research in these fields. Here we generate high quality de novo transcriptomes for four salmonid species: Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Arctic charr (Salvelinus alpinus), and European whitefish (Coregonus lavaretus). All species except Atlantic salmon have no reference genome publicly available and few if any genomic studies to date.

Concepts: Evolution, Fish, Salmon, Salmonidae, Salmo, Trout, Salvelinus, Brook trout

3

The gastrointestinal tract (GIT) of fish supports a dynamic microbial ecosystem that is intimately linked to host nutrient acquisition, epithelial development, immune system priming, and disease prevention, and we are far from understanding the complex interactions among parasites, symbiotic gut bacteria, and host fitness. Here, we analyzed the effects of environmental factors and parasitic burdens on the microbial composition and diversity within the GIT of the brown trout (Salmo trutta). We focused on the emerging dangerous salmonid myxozoan parasite Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, to demonstrate the potential role of GIT micobiomes in the modulation of host-parasite relationships. The microbial diversity in the GIT displayed clear clustering according to the river of origin, while considerable variation was also found among fish from the same river. Environmental variables such as oxygen concentration, water temperature, and river morphometry strongly associated with both the river microbial community and the GIT microbiome, supporting the role of the environment in microbial assemblage and the relative insignificance of the host genotype and gender. Contrary to expectations, the parasite load exhibited a significant positive relationship with the richness of the GIT microbiome. Many operational taxonomic units (OTUs; n = 202) are more abundant in T. bryosalmonae-infected fish, suggesting that brown trout with large parasite burdens are prone to lose their GIT microbiome homeostasis. The OTUs with the strongest increase in infected trout are mostly nonpathogenic aquatic, anaerobic sediment/sludge, or ruminant bacteria. Our results underscore the significance of the interactions among parasitic disease, abiotic factors, and the GIT microbiome in disease etiology. IMPORTANCE Cohabiting microorganisms play diverse and important roles in the biology of multicellular hosts, but their diversity and interactions with abiotic and biotic factors remain largely unsurveyed. Nevertheless, it is becoming increasingly clear that many properties of host phenotypes reflect contributions from the associated microbiome. We focus on a question of how parasites, the host genetic background, and abiotic factors influence the microbiome in salmonid hosts by using a host-parasite model consisting of wild brown trout (Salmo trutta) and the myxozoan Tetracapsuloides bryosalmonae, which causes widely distributed proliferative kidney disease. We show that parasite infection increases the frequency of bacteria from the surrounding river water community, reflecting impaired homeostasis in the fish gut. Our results also demonstrate the importance of abiotic environmental factors and host size in the assemblage of the gut microbiome of fish and the relative insignificance of the host genotype and gender.

Concepts: Immune system, Bacteria, Symbiosis, Parasitism, Salmo, Biotic component, Brown trout, Brook trout