SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Brodmann area 24

108

Musical memory is considered to be partly independent from other memory systems. In Alzheimer’s disease and different types of dementia, musical memory is surprisingly robust, and likewise for brain lesions affecting other kinds of memory. However, the mechanisms and neural substrates of musical memory remain poorly understood. In a group of 32 normal young human subjects (16 male and 16 female, mean age of 28.0 ± 2.2 years), we performed a 7 T functional magnetic resonance imaging study of brain responses to music excerpts that were unknown, recently known (heard an hour before scanning), and long-known. We used multivariate pattern classification to identify brain regions that encode long-term musical memory. The results showed a crucial role for the caudal anterior cingulate and the ventral pre-supplementary motor area in the neural encoding of long-known as compared with recently known and unknown music. In the second part of the study, we analysed data of three essential Alzheimer’s disease biomarkers in a region of interest derived from our musical memory findings (caudal anterior cingulate cortex and ventral pre-supplementary motor area) in 20 patients with Alzheimer’s disease (10 male and 10 female, mean age of 68.9 ± 9.0 years) and 34 healthy control subjects (14 male and 20 female, mean age of 68.1 ± 7.2 years). Interestingly, the regions identified to encode musical memory corresponded to areas that showed substantially minimal cortical atrophy (as measured with magnetic resonance imaging), and minimal disruption of glucose-metabolism (as measured with (18)F-fluorodeoxyglucose positron emission tomography), as compared to the rest of the brain. However, amyloid-β deposition (as measured with (18)F-flobetapir positron emission tomography) within the currently observed regions of interest was not substantially less than in the rest of the brain, which suggests that the regions of interest were still in a very early stage of the expected course of biomarker development in these regions (amyloid accumulation → hypometabolism → cortical atrophy) and therefore relatively well preserved. Given the observed overlap of musical memory regions with areas that are relatively spared in Alzheimer’s disease, the current findings may thus explain the surprising preservation of musical memory in this neurodegenerative disease.

Concepts: Alzheimer's disease, Brain, Positron emission tomography, Magnetic resonance imaging, Neurology, Memory, Cerebrum, Brodmann area 24

83

Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56-75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group’s memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health.

Concepts: Better, Psychology, Brain, Cognition, Cerebral cortex, Cerebrum, Brodmann area 24, Anterior cingulate cortex

62

In human studies, how averaged activation in a brain region relates to human behavior has been extensively investigated. This approach has led to the finding that positive and negative facial preferences are represented by different brain regions. However, using a functional magnetic resonance imaging (fMRI) decoded neurofeedback (DecNef) method, we found that different patterns of neural activations within the cingulate cortex (CC) play roles in representing opposite directions of facial preference. In the present study, while neutrally preferred faces were presented, multi-voxel activation patterns in the CC that corresponded to higher (or lower) preference were repeatedly induced by fMRI DecNef. As a result, previously neutrally preferred faces became more (or less) preferred. We conclude that a different activation pattern in the CC, rather than averaged activation in a different area, represents and suffices to determine positive or negative facial preference. This new approach may reveal the importance of an activation pattern within a brain region in many cognitive functions.

Concepts: Psychology, Brain, Human brain, Magnetic resonance imaging, Cerebrum, Motivation, Brodmann area, Brodmann area 24

62

Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.

Concepts: Neuroanatomy, Brain, Cerebrum, Multitasking, Media multitasking, Brodmann area 24, Anterior cingulate cortex, Cingulate cortex

51

Lack of physical engagement, productivity, and initiative-so-called “behavioral apathy”-is a common problem with significant impact, both personal and economic. Here, we investigate whether there might be a biological basis to such lack of motivation using a new effort and reward-based decision-making paradigm, combined with functional and diffusion-weighted imaging. We hypothesized that behavioral apathy in otherwise healthy people might be associated with differences in brain systems underlying either motivation to act (specifically in effort and reward-based decision-making) or in action processing (transformation of an intention into action). The results demonstrate that behavioral apathy is associated with increased effort sensitivity as well as greater recruitment of neural systems involved in action anticipation: supplementary motor area (SMA) and cingulate motor zones. In addition, decreased structural and functional connectivity between anterior cingulate cortex (ACC) and SMA were associated with increased behavioral apathy. These findings reveal that effort sensitivity and translation of intentions into actions might make a critical contribution to behavioral apathy. We propose a mechanism whereby inefficient communication between ACC and SMA might lead to increased physiological cost-and greater effort sensitivity-for action initiation in more apathetic people.

Concepts: Neuroanatomy, Brain, Cerebral cortex, Cerebrum, Premotor cortex, Brodmann area 24, Anterior cingulate cortex, Cingulate cortex

49

We hypothesize that the major consciousness deficit observed in coma is due to the breakdown of long-range neuronal communication supported by precuneus and posterior cingulate cortex (PCC), and that prognosis depends on a specific connectivity pattern in these networks.

Concepts: Neuron, Brain, Cerebral cortex, Cerebrum, Brodmann area 24, Cingulate cortex, Posterior cingulate, Precuneus

48

Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief.

Concepts: Psychology, Cerebrum, Machine learning, Learning, Knowledge, Brodmann area 24, Anterior cingulate cortex, Cingulate cortex

47

Consolation behavior toward distressed others is common in humans and great apes, yet our ability to explore the biological mechanisms underlying this behavior is limited by its apparent absence in laboratory animals. Here, we provide empirical evidence that a rodent species, the highly social and monogamous prairie vole (Microtus ochrogaster), greatly increases partner-directed grooming toward familiar conspecifics (but not strangers) that have experienced an unobserved stressor, providing social buffering. Prairie voles also match the fear response, anxiety-related behaviors, and corticosterone increase of the stressed cagemate, suggesting an empathy mechanism. Exposure to the stressed cagemate increases activity in the anterior cingulate cortex, and oxytocin receptor antagonist infused into this region abolishes the partner-directed response, showing conserved neural mechanisms between prairie vole and human.

Concepts: Rodent, Brodmann area 24, Anterior cingulate cortex, Cingulate cortex, Muroidea, Vole, Microtus, Prairie Vole

42

Observing the pain of others has been shown to elicit greater activation in sensory and emotional areas of the brain suggested to represent a neural marker of empathy. This modulation of brain responses to others' pain is dependent on the race of the observed person, such that observing own-race people in pain is associated with greater activity in the anterior cingulate and bilateral insula cortices compared to other-race people. Importantly, it is not known how this racial bias to pain in other-race individuals might change over time in new immigrants or might depend on the level and quality of contact with people of the other-race. We investigated these issues by recruiting Chinese students who had first arrived in Australia within the past 6 months to 5 years and assessing their level of contact with other races across different social contexts using comprehensive rating scales. During fMRI, participants observed videos of own-race/other-race individuals, as well as own-group/other-group individuals, receiving painful or non-painful touch. The typical racial bias in neural responses to observed pain was evident, whereby activation in the anterior cingulate cortex (ACC) was greater for pain in own-race compared to other-race people. Crucially, activation in the anterior cingulate to pain in other races increased significantly with the level of contact participants reported with people of the other race. Importantly, this correlation did not depend on the closeness of contact or personal relationships, but simply on the overall level of experience with people of the other race in their every-day environment. Racial bias in neural responses to others' pain, as a neural marker of empathy, therefore changes with experience in new immigrants at least within 5 years of arrival in the new society and, crucially, depends on the level of contact with people of the other race in every-day life contexts.

Concepts: Cerebrum, Pain, Race, Race and ethnicity in the United States Census, Brodmann area 24, Anterior cingulate cortex, Cingulate cortex, Insular cortex

39

Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability.

Concepts: Brain, Cerebrum, Prefrontal cortex, Ventromedial prefrontal cortex, Brodmann area 24, Anterior cingulate cortex, Cingulate cortex, Insular cortex