SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: BRCA1

189

Breast, endometrial, and ovarian cancers share some hormonal and epidemiologic risk factors. While several models predict absolute risk of breast cancer, there are few models for ovarian cancer in the general population, and none for endometrial cancer.

Concepts: Epidemiology, Cancer, Breast cancer, Metastasis, Menopause, Estrogen, BRCA2, BRCA1

179

The tumour suppressor BRCA1 is mutated in familial breast and ovarian cancer but its role in protecting other tissues from DNA damage has not been explored. Here we show a new role for BRCA1 as a gatekeeper of cardiac function and survival. In mice, loss of BRCA1 in cardiomyocytes results in adverse cardiac remodelling, poor ventricular function and higher mortality in response to ischaemic or genotoxic stress. Mechanistically, loss of cardiomyocyte BRCA1 results in impaired DNA double-strand break repair and activated p53-mediated pro-apoptotic signalling culminating in increased cardiomyocyte apoptosis, whereas deletion of the p53 gene rescues BRCA1-deficient mice from cardiac failure. In human adult and fetal cardiac tissues, ischaemia induces double-strand breaks and upregulates BRCA1 expression. These data reveal BRCA1 as a novel and essential adaptive response molecule shielding cardiomyocytes from DNA damage, apoptosis and heart dysfunction. BRCA1 mutation carriers, in addition to risk of breast and ovarian cancer, may be at a previously unrecognized risk of cardiac failure.

Concepts: DNA, Cancer, Mutation, Heart, DNA repair, BRCA2, P53, BRCA1

177

Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.

Concepts: Genetics, Cancer, Breast cancer, Oncology, Tumor, BRCA2, Breast, BRCA1

177

Repair of DNA double-strand breaks (DSBs) by homologous recombination requires resection of 5'-termini to generate 3'-single-strand DNA tails. Key components of this reaction are exonuclease 1 and the bifunctional endo/exonuclease, Mre11 (refs 2-4). Mre11 endonuclease activity is critical when DSB termini are blocked by bound protein–such as by the DNA end-joining complex, topoisomerases or the meiotic transesterase Spo11 (refs 7-13)–but a specific function for the Mre11 3'-5' exonuclease activity has remained elusive. Here we use Saccharomyces cerevisiae to reveal a role for the Mre11 exonuclease during the resection of Spo11-linked 5'-DNA termini in vivo. We show that the residual resection observed in Exo1-mutant cells is dependent on Mre11, and that both exonuclease activities are required for efficient DSB repair. Previous work has indicated that resection traverses unidirectionally. Using a combination of physical assays for 5'-end processing, our results indicate an alternative mechanism involving bidirectional resection. First, Mre11 nicks the strand to be resected up to 300 nucleotides from the 5'-terminus of the DSB–much further away than previously assumed. Second, this nick enables resection in a bidirectional manner, using Exo1 in the 5'-3' direction away from the DSB, and Mre11 in the 3'-5' direction towards the DSB end. Mre11 exonuclease activity also confers resistance to DNA damage in cycling cells, suggesting that Mre11-catalysed resection may be a general feature of various DNA repair pathways.

Concepts: DNA, Gene, Genetics, Adenosine triphosphate, DNA repair, Homologous recombination, BRCA1, Genetic recombination

167

Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.Oncogene advance online publication, 21 January 2013; doi:10.1038/onc.2012.632.

Concepts: Gene expression, Cancer, Hereditary nonpolyposis colorectal cancer, BRCA2, Enzyme inhibitor, Mitosis, BRCA1, Aurora kinase

136

BRCA1 and BRCA2 are essential for the repair of double-strand DNA breaks, and alterations in these genes are a hallmark of breast and ovarian carcinomas. Other functionally related genes may also play important roles in carcinogenesis. Amplification of EMSY, a putative BRCAness gene, has been suggested to impair DNA damage repair by suppressing BRCA2 function. We employed direct repeat GFP (DR-GFP) and RAD51 foci formation assays to show that EMSY overexpression impairs the repair of damaged DNA, suggesting that EMSY belongs to the family of BRCAness proteins. We also identified a novel phospho-site at threonine 207 (T207) and demonstrated its role in EMSY-driven suppression of DNA damage repair. In vitro kinase assays established that protein kinase A (PKA) directly phosphorylates the T207 phospho-site. Immunoprecipitation experiments suggest that EMSY-driven suppression of DNA damage repair is a BRCA2-independent process. The data also suggest that EMSY amplification is a BRCAness feature, and may help to expand the population of patients who could benefit from targeted therapies that are also effective in BRCA1/2-mutant cancers.

Concepts: DNA, Protein, Gene, Genetics, DNA repair, Protein kinase, BRCA2, BRCA1

90

Background Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) ½ inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum-sensitive, recurrent ovarian cancer. Methods In this randomized, double-blind, phase 3 trial, patients were categorized according to the presence or absence of a germline BRCA mutation (gBRCA cohort and non-gBRCA cohort) and the type of non-gBRCA mutation and were randomly assigned in a 2:1 ratio to receive niraparib (300 mg) or placebo once daily. The primary end point was progression-free survival. Results Of 553 enrolled patients, 203 were in the gBRCA cohort (with 138 assigned to niraparib and 65 to placebo), and 350 patients were in the non-gBRCA cohort (with 234 assigned to niraparib and 116 to placebo). Patients in the niraparib group had a significantly longer median duration of progression-free survival than did those in the placebo group, including 21.0 vs. 5.5 months in the gBRCA cohort (hazard ratio, 0.27; 95% confidence interval [CI], 0.17 to 0.41), as compared with 12.9 months vs. 3.8 months in the non-gBRCA cohort for patients who had tumors with homologous recombination deficiency (HRD) (hazard ratio, 0.38; 95% CI, 0.24 to 0.59) and 9.3 months vs. 3.9 months in the overall non-gBRCA cohort (hazard ratio, 0.45; 95% CI, 0.34 to 0.61; P<0.001 for all three comparisons). The most common grade 3 or 4 adverse events that were reported in the niraparib group were thrombocytopenia (in 33.8%), anemia (in 25.3%), and neutropenia (in 19.6%), which were managed with dose modifications. Conclusions Among patients with platinum-sensitive, recurrent ovarian cancer, the median duration of progression-free survival was significantly longer among those receiving niraparib than among those receiving placebo, regardless of the presence or absence of gBRCA mutations or HRD status, with moderate bone marrow toxicity. (Funded by Tesaro; ClinicalTrials.gov number, NCT01847274 .).

Concepts: DNA, Clinical trial, Cancer, Mutation, Bone marrow, DNA repair, BRCA2, BRCA1

56

Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP).

Concepts: Cancer, Mutation, Oncology, Hereditary nonpolyposis colorectal cancer, BRCA2, Adenocarcinoma, Minimally invasive, BRCA1

56

Background Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. Methods We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. Results A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). Conclusions In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by Stand Up To Cancer and others.).

Concepts: DNA, Cancer, Breast cancer, Metastasis, Mutation, Prostate cancer, BRCA2, BRCA1

44

Do women with BRCA1 or BRCA2 mutations have reduced ovarian reserve, as measured by circulating anti-Müllerian hormone (AMH) concentration?

Concepts: Electrochemistry, DNA repair, Concentration, BRCA2, Ovarian cancer, BRCA1