SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Brass

195

Noroviruses (family Caliciviridae) are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS) determined that Cu(II) and especially Cu(I) ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked), which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen.

Concepts: Virus, Zinc, Copper, Bronze, Steel, Gastroenteritis, Norovirus, Brass

168

In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias.

Concepts: Ultraviolet, Acid, Sunlight, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Brass

101

To assess the ability of copper alloy surfaces to mitigate the bacterial burden associated with commonly touched surfaces in conjunction with daily and terminal cleaning in rural hospital settings.

Concepts: Bronze, Brass

28

A zinc oxide (ZnO) nanostructured thin film synthesized by a vapour phase transport technique on a platinum coated silicon (Pt/Si) substrate has been successfully utilized for the detection of cholesterol. Amperometric and photometric studies reveal that the prepared bioelectrode ChOx/ZnO/Pt/Si is highly sensitive to the detection of cholesterol over a wide concentration range, 0.12-12.93 mM (5-500 mg dl(-1)). The higher sensitivity is attributed to the large surface area of ZnO thin film for effective loading of ChOx besides its high electron communication capability. A relatively low value of the enzyme’s kinetic parameter (Michaelis-Menten constant, 1.08 mM) indicates an enhanced affinity of the enzyme (ChOx) towards the analyte (cholesterol). The prepared bioelectrode is found to exhibit a long shelf life of more than 10 weeks, having negligible interference from the presence of other biomolecules present in human serum indicating potential application of the ZnO nanostructured thin film for cholesterol sensing.

Concepts: Oxygen, Ultraviolet, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Surface area, Brass

27

Abstract In this study, the effect of ZnO nanoparticles and ZnCl2 on growth, reproduction and accumulation of zinc in Daphnia magna was determined in a 21 day chronic toxicity test. A variety of techniques were used to distinguish the free zinc ion, dissolved, nanoparticle and aggregated zinc fraction in the daphnia test medium. The results showed similar chronic effects on growth, reproduction and accumulation for the ZnO nanoparticles (EC10, 20, 50 reproduction: 0.030, 0.049, 0.112 mg Zn/l) and the ZnCl2 (EC10, 20, 50 reproduction: 0.014, 0.027, 0.082 mg Zn/l). A large fraction of the nanoparticles rapidly dissolved after introduction in the exposure medium. Aggregation of nanoparticles was also observed but within 48 hours of exposure most of these ZnO aggregates were dissolved. Based on the combined dissolution kinetics and toxicity results it can be concluded that the toxicological effects of ZnO nanoparticles at the chronic level can be largely attributed to the dissolved fraction rather than the nanoparticles or initially formed aggregates.

Concepts: Ultraviolet, Aggregate, Toxicology, Zinc, Zinc oxide, Brass, Dr. Dre, Zinc chloride

26

A novel biosensor for determination of L-glutamine in pharmaceutical glutamine powder was developed via immobilizing our produced glutaminase enzyme from Hypocria jecorina onto our prepared zinc oxide (ZnO) nanorod and chitosan. ZnO nanorods were prepared as surface-dependent and surface-independent and both were used. The biosensor is specific for L-glutamine and the peculiar analytical properties (linearity range, reproducibility, and accuracy) of it were experimentally determined. The optimum operating conditions of the biosensor such as buffer concentration, buffer pH, and medium temperature effect on the response of biosensor were studied. Km and Vmax values for the our-producing glutaminase enzyme from Hypocria jecorina immobilized on the biosensor were also determined as 0.29 mM and 208.33 mV/min., respectively, from Lineweaver-Burk plot. The biosensor was then used for the determination of glutamine contained in pharmaceutical formulations.

Concepts: Zinc, PH, Titanium dioxide, Buffer solution, Zinc oxide, Sunscreen, Brass, Glutamine

24

To fabricate a friction-reducing and antibacterial coating with zinc oxide (ZnO) nanoparticles on nickel-titanium (NiTi) wire.

Concepts: Ultraviolet, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Brass, Zinc acetate, Calamine

24

Vertically oriented zinc oxide nanostructures based disposable diagnostic biosensor for detecting and quantifying levels of cardiac troponin-T from human serum has been developed.

Concepts: Ultraviolet, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Brass, Zinc acetate, Calamine

23

To investigate the physical and biological properties of bioinspired zinc oxide (ZnO) nanoparticles via aqueous leaf extracts of Sageretia thea.

Concepts: Ultraviolet, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Brass, Zinc acetate, Calamine

23