SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Brachiosaurus

341

Diplodocidae are among the best known sauropod dinosaurs. Several species were described in the late 1800s or early 1900s from the Morrison Formation of North America. Since then, numerous additional specimens were recovered in the USA, Tanzania, Portugal, and Argentina, as well as possibly Spain, England, Georgia, Zimbabwe, and Asia. To date, the clade includes about 12 to 15 nominal species, some of them with questionable taxonomic status (e.g., ‘Diplodocus’ hayi or Dyslocosaurus polyonychius), and ranging in age from Late Jurassic to Early Cretaceous. However, intrageneric relationships of the iconic, multi-species genera Apatosaurus and Diplodocus are still poorly known. The way to resolve this issue is a specimen-based phylogenetic analysis, which has been previously implemented for Apatosaurus, but is here performed for the first time for the entire clade of Diplodocidae. The analysis includes 81 operational taxonomic units, 49 of which belong to Diplodocidae. The set of OTUs includes all name-bearing type specimens previously proposed to belong to Diplodocidae, alongside a set of relatively complete referred specimens, which increase the amount of anatomically overlapping material. Non-diplodocid outgroups were selected to test the affinities of potential diplodocid specimens that have subsequently been suggested to belong outside the clade. The specimens were scored for 477 morphological characters, representing one of the most extensive phylogenetic analyses of sauropod dinosaurs. Character states were figured and tables given in the case of numerical characters. The resulting cladogram recovers the classical arrangement of diplodocid relationships. Two numerical approaches were used to increase reproducibility in our taxonomic delimitation of species and genera. This resulted in the proposal that some species previously included in well-known genera like Apatosaurus and Diplodocus are generically distinct. Of particular note is that the famous genus Brontosaurus is considered valid by our quantitative approach. Furthermore, “Diplodocus” hayi represents a unique genus, which will herein be called Galeamopus gen. nov. On the other hand, these numerical approaches imply synonymization of “Dinheirosaurus” from the Late Jurassic of Portugal with the Morrison Formation genus Supersaurus. Our use of a specimen-, rather than species-based approach increases knowledge of intraspecific and intrageneric variation in diplodocids, and the study demonstrates how specimen-based phylogenetic analysis is a valuable tool in sauropod taxonomy, and potentially in paleontology and taxonomy as a whole.

Concepts: Biology, Sauropoda, Dinosaur, Diplodocus, Supersaurus, Jurassic, Brachiosaurus, Camarasaurus

67

Brachiosauridae is a clade of titanosauriform sauropod dinosaurs that includes the well-known Late Jurassic taxa Brachiosaurus and Giraffatitan. However, there is disagreement over the brachiosaurid affinities of most other taxa, and little consensus regarding the clade’s composition or inter-relationships. An unnamed partial sauropod skeleton was collected from middle-late Oxfordian (early Late Jurassic) deposits in Damparis, in the Jura department of eastern France, in 1934. Since its brief description in 1943, this specimen has been informally known in the literature as the ‘Damparis sauropod’ and ‘French Bothriospondylus’, and has been considered a brachiosaurid by most authors. If correctly identified, this would make the specimen the earliest known titanosauriform. Coupled with its relatively complete nature and the rarity of Oxfordian sauropod remains in general, this is an important specimen for understanding the early evolution of Titanosauriformes. Full preparation and description of this specimen, known from teeth, vertebrae and most of the appendicular skeleton of a single individual, recognises it as a distinct taxon: Vouivria damparisensis gen. et sp. nov. Phylogenetic analysis of a data matrix comprising 77 taxa (including all putative brachiosaurids) scored for 416 characters recovers a fairly well resolved Brachiosauridae. Vouivria is a basal brachiosaurid, confirming its status as the stratigraphically oldest known titanosauriform. Brachiosauridae consists of a paraphyletic array of Late Jurassic forms, with Europasaurus, Vouivria and Brachiosaurus recovered as successively more nested genera that lie outside of a clade comprising (Giraffatitan + Sonorasaurus) + (Lusotitan + (Cedarosaurus + Venenosaurus)). Abydosaurus forms an unresolved polytomy with the latter five taxa. The Early Cretaceous South American sauropod Padillasaurus was previously regarded as a brachiosaurid, but is here placed within Somphospondyli. A recent study contended that a number of characters used in a previous iteration of this data matrix are ‘biologically related’, and thus should be excluded from phylogenetic analysis. We demonstrate that almost all of these characters show variation between taxa, and implementation of sensitivity analyses, in which these characters are excluded, has no effect on tree topology or resolution. We argue that where there is morphological variation, this should be captured, rather than ignored. Unambiguous brachiosaurid remains are known only from the USA, western Europe and Africa, and the clade spanned the Late Jurassic through to the late Albian/early Cenomanian, with the last known occurrences all from the USA. Regardless of whether their absence from the Cretaceous of Europe, as well as other regions entirely, reflects regional extinctions and genuine absences, or sampling artefacts, brachiosaurids appear to have become globally extinct by the earliest Late Cretaceous.

Concepts: Cretaceous, Sauropoda, Dinosaur, Jurassic, Brachiosaurus, Macronaria, Brachiosauridae, Giraffatitan

60

Diplodocids are among the best known sauropod dinosaurs. Numerous specimens of currently 15 accepted species belonging to ten genera have been reported from the Late Jurassic to Early Cretaceous of North and South America, Europe, and Africa. The highest diversity is known from the Upper Jurassic Morrison Formation of the western United States: a recent review recognized 12 valid, named species, and possibly three additional, yet unnamed ones. One of these is herein described in detail and referred to the genus Galeamopus. The holotype specimen of Galeamopus pabsti sp. nov., SMA 0011, is represented by material from all body parts but the tail, and was found at the Howe-Scott Quarry in the northern Bighorn Basin in Wyoming, USA. Autapomorphic features of the new species include a horizontal canal on the maxilla that connects the posterior margin of the preantorbital and the ventral margin of the antorbital fenestrae, a vertical midline groove marking the sagittal nuchal crest, the presence of a large foramen connecting the postzygapophyseal centrodiapophyseal fossa and the spinopostzygapophyseal fossa of mid- and posterior cervical vertebrae, a very robust humerus, a laterally placed, rugose tubercle on the concave proximal portion of the anterior surface of the humerus, a relatively stout radius, the absence of a distinct ambiens process on the pubis, and a distinctly concave posteroventral margin of the ascending process of the astragalus. In addition to the holotype specimen SMA 0011, the skull USNM 2673 can also be referred to Galeamopus pabsti. Histology shows that the type specimen SMA 0011 is sexually mature, although neurocentral closure was not completed at the time of death. Because SMA 0011 has highly pneumatized cervical vertebrae, the development of the lamination appears a more important indicator for individual age than neurocentral fusion patterns. SMA 0011 is one of very few sauropod specimens that preserves the cervico-dorsal transition in both vertebrae and ribs. The association of ribs with their respective vertebrae shows that the transition between cervical and dorsal vertebrae is significantly different in Galeamopus pabsti than in Diplodocus carnegii or Apatosaurus louisae, being represented by a considerable shortening of the centra from the last cervical to the first dorsal vertebra. Diplodocids show a surprisingly high diversity in the Morrison Formation. This can possibly be explained by a combination of geographical and temporal segregation, and niche partitioning.

Concepts: Cervical vertebrae, Dinosaur, Diplodocus, Supersaurus, Jurassic, Brachiosaurus, Camarasaurus, Allosaurus

47

High megaherbivore species richness is documented in both fossil and contemporary ecosystems despite their high individual energy requirements. An extreme example of this is the Late Jurassic Morrison Formation, which was dominated by sauropod dinosaurs, the largest known terrestrial vertebrates. High sauropod diversity within the resource-limited Morrison is paradoxical, but might be explicable through sophisticated resource partitioning. This hypothesis was tested through finite-element analysis of the crania of the Morrison taxa Camarasaurus and Diplodocus. Results demonstrate divergent specialization, with Camarasaurus capable of exerting and accommodating greater bite forces than Diplodocus, permitting consumption of harder food items. Analysis of craniodental biomechanical characters taken from 35 sauropod taxa demonstrates a functional dichotomy in terms of bite force, cranial robustness and occlusal relationships yielding two polyphyletic functional ‘grades’. Morrison taxa are widely distributed within and between these two morphotypes, reflecting distinctive foraging specializations that formed a biomechanical basis for niche partitioning between them. This partitioning, coupled with benefits associated with large body size, would have enabled the high sauropod diversities present in the Morrison Formation. Further, this provides insight into the mechanisms responsible for supporting the high diversities of large megaherbivores observed in other Mesozoic and Cenozoic communities, particularly those occurring in resource-limited environments.

Concepts: Sauropoda, Dinosaur, Diplodocus, Jurassic, Brachiosaurus, Camarasaurus, Allosaurus, Morrison Formation

23

Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula-those that leave few or no skeletal traces-in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy.

Concepts: Sauropoda, Dinosaur, Sauropodomorpha, Diplodocus, Saurischia, Supersaurus, Brachiosaurus, Brachiosauridae

10

The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically ‘vulcanodontid’ character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod-eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution.

Concepts: Yunnan, Sauropoda, Dinosaur, Sauropodomorpha, Diplodocus, Saurischia, Titanosaur, Brachiosaurus

5

Sauropod dinosaurs were the largest vertebrates ever to walk the Earth, and as mega-herbivores they were important parts of terrestrial ecosystems. In the Late Jurassic-aged Morrison depositional basin of western North America, these animals occupied lowland river-floodplain settings characterized by a seasonally dry climate. Massive herbivores with high nutritional and water needs could periodically experience nutritional and water stress under these conditions, and thus the common occurrence of sauropods in this basin has remained a paradox. Energetic arguments and mammalian analogues have been used to suggest that migration allowed sauropods access to food and water resources over a wide region or during times of drought or both, but there has been no direct support for these hypotheses. Here we compare oxygen isotope ratios (δ(18)O) of tooth-enamel carbonate from the sauropod Camarasaurus with those of ancient soil, lake and wetland (that is, ‘authigenic’) carbonates that formed in lowland settings. We demonstrate that certain populations of these animals did in fact undertake seasonal migrations of several hundred kilometres from lowland to upland environments. This ability to describe patterns of sauropod movement will help to elucidate the role that migration played in the ecology and evolution of gigantism of these and associated dinosaurs.

Concepts: Water, Earth, Sauropoda, Dinosaur, Diplodocus, Jurassic, Brachiosaurus, Camarasaurus

1

A partial skeleton from the Little Snowy Mountains of central Montana is the first referable specimen of the Morrison Formation macronarian sauropod Camarasaurus. This specimen also represents the northernmost occurrence of a sauropod in the Morrison. Histological study indicates that, although the specimen is relatively small statured, it is skeletally mature; this further emphasizes that size is not a undeviating proxy to maturity in dinosaurs, and that morphologies associated with an individual’s age and stature may be more nebulous in sauropods.

Concepts: Sauropoda, Dinosaur, Sauropodomorpha, Diplodocus, Titanosaur, Brachiosaurus, Camarasaurus, Macronaria

1

Attempts to reconstruct the neutral neck posture of sauropod dinosaurs, or indeed any tetrapod, are doomed to failure when based only on the geometry of the bony cervical vertebrae. The thickness of the articular cartilage between the centra of adjacent vertebrae affects posture. It extends (raises) the neck by an amount roughly proportional to the thickness of the cartilage. It is possible to quantify the angle of extension at an intervertebral joint: it is roughly equal, in radians, to the cartilage thickness divided by the height of the zygapophyseal facets over the centre of rotation. Applying this formula to published measurements of well-known sauropod specimens suggests that if the thickness of cartilage were equal to 4.5%, 10% or 18% of centrum length, the neutral pose of the Apatosaurus louisae holotype CM 3018 would be extended by an average of 5.5, 11.8 or 21.2 degrees, respectively, at each intervertebral joint. For the Diplodocus carnegii holotype CM 84, the corresponding angles of additional extension are even greater: 8.4, 18.6 or 33.3 degrees. The cartilaginous neutral postures (CNPs) calculated for 10% cartilage-the most reasonable estimate-appear outlandish. But it must be remembered that these would not have been the habitual life postures, because tetrapods habitually extend the base of their neck and flex the anterior part, yielding the distinctive S-curve most easily seen in birds.

Concepts: Knee, Sauropoda, Dinosaur, Diplodocus, Brachiosaurus, Camarasaurus, Othniel Charles Marsh, Apatosaurus

0

A very long neck is a characteristic feature of most sauropod dinosaurs. In the genus Mamenchisaurus, neck length is extreme, greater than 40 percent of total body length. However, the posture, utilization, and selective advantage of very long necks in sauropods are still controversial. An excellently preserved skeleton of Mamenchisaurus youngi, including a complete neck, provides an opportunity for a comprehensive biomechanical analysis of neck posture and mobility. The biomechanical evidence indicates that Mamenchisaurus youngi had a nearly straight, near horizontal neck posture and browsed at low or medium heights. The results differ from the findings for some other sauropod species, like Euhelopus, Diplodocus, and Giraffatitan (Brachiosaurus) that had been analyzed in previous studies with similar methods. The selective advantage of extreme neck length in sauropods is likely advantageous for different feeding strategies.

Concepts: Natural selection, Sauropoda, Dinosaur, Diplodocus, Brachiosaurus, Brachiosauridae, Sauroposeidon, Mamenchisaurus