Discover the most talked about and latest scientific content & concepts.

Concept: Bone healing


OBJECTIVES: To report on a series of dogs and cats with long bone fractures that occurred as a direct consequence of linear external skeletal fixation (ESF) application. METHODS: Retrospective study. Data from the medical records and radiographs of canine (n = 4) and feline (n = 7) cases were collected from three referral and three first opinion practices in the UK (1999 to 2011). RESULTS: Long bone fractures occurred following the application of linear ESF either while the ESF was in situ or after removal. All fractures occurred through either a pin tract or an empty drill hole. Pins associated with ESF-related fracture tended to be in the higher end of the recommended size range. The majority of cases had additional complicating factors such as multiple injuries, revision surgery, poor owner compliance with postoperative exercise restriction and the presence of empty drill holes. CLINICAL SIGNIFICANCE: In cases with features that could complicate outcome, careful attention should be paid to recommendations for ESF application. Leaving empty drill holes is suboptimal. The retrospective nature of the study, low numbers of, and diversity amongst, cases should be taken into consideration when interpreting the results from this study.

Concepts: Osteoporosis, Bone, Bone fracture, Fracture, Orthopedic surgery, Bone fractures, Bone healing, Fibrocartilage callus


We evaluated both the outcome of using a locking plate as a definitive external fixator for treating open tibial fractures and, using finite element analysis, the biomechanical performance of external and internal metaphyseal locked plates in treating proximal tibial fractures. Eight open tibial patients were treated using a metaphyseal locked plate as a low-profile definitive external fixator. Then, finite element models of internal (IPF) as well as two different external plate fixations (EPFs) for proximal tibial fractures were reconstructed. The offset distances from the bone surface to the EPFs were 6cm and 10cm. Both axial stiffness and angular stiffness were calculated to evaluate the biomechanical performance of these three models. The mean follow-up period was 31 months (range, 18-43 months). All the fractures united and the mean bone healing time was 37.5 weeks (range, 20-52 weeks). All patients had excellent or good functional results and were walking freely at the final follow-up. The finite element finding revealed that axial stiffness and angular stiffness decreased as the offset distance from the bone surface increased. Compared to the IPF models, in the two EPF models, axial stiffness decreased by 84-94%, whereas the angular stiffness decreased by 12-21%. The locking plate used as a definitive external fixator provided a high rate of union. While the locking plate is not totally rigid, it is clinically stable and may be advisable for stiffness reduction of plating constructs, thus promoting fracture healing by callus formation. Our patients experienced a comfortable clinical course, excellent knee and ankle joint motion, satisfactory functional results and an acceptable complication rate.

Concepts: Bone, Bone fracture, Fracture, Finite element method, Finite element method in structural mechanics, Bone healing, Periosteum, Direct stiffness method


BACKGROUND: The bone nonunion is an important complication of bone fracture repair. The existing models developed on small animal species prevent using osteosynthesis materials designed to be implanted in human bones. The goal of this study was to develop a nonunion process in a noncritical segmental tibial defect in sheep, a species analogous in size to humans. MATERIALS AND METHODS: The animals were divided into two groups of four animals each. In Group 1 (experimental), the defect was created by surgically stripping the periosteum from the edges of a distal tibial osteotomy, keeping the edges 5 mm apart, and placing an incomplete O-shaped silicone ring in the gap. Group 2 (control) was intervened with a simple fracture at the distal end of the tibia. In both groups an interlocking nail was used as a fixation system. Over 8 wk after surgery, radiographs and histologic and histomorphometric analyses were performed. RESULTS: The control group showed a typical bone repair process. In contrast, the experimental group showed a fracture line with rounded edges and a scarce callus formation. The bone callus showed reduced amount of bone formation and large content of fibrous tissue (P=0.001). CONCLUSIONS: These results indicate that our model developed an atrophic nonunion in sheep, a species having multiple similarities to humans, such as weight, size, bone structure, and bone remodeling process.

Concepts: Osteoporosis, Bone, Bone fracture, Skeletal system, Science, Orthopedic surgery, Bone healing, Fibrocartilage callus


During the healing process after bone fracture, soft callus forms adjacent to the fracture site, is replaced by hard callus, and is finally remodeled to the original bone configuration. Although the cambium layer of the periosteum is reported to play an essential role in callus formation, we still lack direct in vivo evidence of this. To investigate the cell lineage of the soft callus, we analyzed the process of fracture healing in Prx1-Cre;ROSA26 reporter (R26R), Col1a1(3.6 kb)-Cre;R26R, Col1a1(2.3 kb)-Cre;R26R, Sox9-CreERT2;R26R, and Sox9-LacZ mice with X-gal staining. In the Prx1-Cre;R26R, in which the cells of the periosteum stained for X-gal before fracture, all cells in the soft callus were X-gal positive, whereas in the Col1a1(3.6 kb)-Cre;R26R mice, the cells in the periosteum before fracture stained for X-gal and the soft callus was partly composed of X-gal-positive cells. In contrast, in the Col1a1(2.3 kb)-Cre;R26R mice, in which the mature osteoblasts in the cambium layer of the periosteum were marked before fracture, no cells in the soft callus at the fracture site were X-gal positive. These results suggest that most of the cells in the soft callus are derived from the mesenchymal progenitors in the periosteum, and not from mature osteoblastic cells. Interestingly, in the Sox9-LacZ mice, Sox9-expressing X-gal-positive cells emerged in the periosteum adjacent to the fracture site 3 days after fracture. We demonstrated this by injecting tamoxifen into the Sox9-CreERT2;R26R mice for 3 days after fracture, so that these Sox9-expressing periosteal cells gave rise to cells in the soft and hard calli. Our findings show that the periosteal cells in which Sox9 expression is induced just after fracture are the major source of the chondrocytes and osteoblasts in the fracture callus.

Concepts: Osteoporosis, Bone, Bone fracture, Healing, Osteoblast, Bone healing, Periosteum, Fibrocartilage callus


It is proposed that the external asymmetric formation of callus tissues that forms naturally about an oblique bone fracture can be predicted computationally. We present an analysis of callus formation for two cases of bone fracture healing: idealised and subject-specific oblique bone fractures. Plane strain finite element (FE) models of the oblique fractures were generated to calculate the compressive strain field experienced by the immature callus tissues due to interfragmentary motion. The external formations of the calluses were phenomenologically simulated using an optimisation style algorithm that iteratively removes tissue that experiences low strains from a large domain. The resultant simulated spatial formation of the healing tissues for the two bone fracture cases showed that the calluses tended to form at an angle equivalent to the angle of the oblique fracture line. The computational results qualitatively correlated with the callus formations found in vivo. Consequently, the proposed methods show potential as a means of predicting callus formation in pre-clinical testing.

Concepts: Osteoporosis, Bone fracture, Orthopedic surgery, Bone fractures, Bone healing, Osteology, Fibrocartilage callus, Catagmatic


Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

Concepts: Better, Clinical trial, Concentration, Clinical research, Clinical trial protocol, Good clinical practice, Bone healing, Clinical site


Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1(-/-)) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1(-/-) cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1(-/-) mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1(-/-) 5 day calluses harbor >2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1(-/-) mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum.

Concepts: Bone, Fracture, Stem cell, Mesenchymal stem cell, Bone marrow, Stem cells, Skeletal system, Bone healing


Failure of bone fracture healing occurs in 5% to 10% of all patients. Nonunion risk is associated with the severity of injury and with the surgical treatment technique, yet progression to nonunion is not fully explained by these risk factors.

Concepts: Osteoporosis, Bone, Bone fracture, Collagen, Orthopedic surgery, Distraction osteogenesis, Bone healing, Osteology


A significant portion of bone fractures fail to heal properly, increasing healthcare costs. Advances in fracture management have slowed because translation barriers have limited generation of mechanism-based explanations for the healing process. When uncertainties are numerous, analogical modeling can be an effective strategy for developing plausible explanations of complex phenomena. We demonstrate the feasibility of engineering analogical models in software to facilitate discovery of biomimetic explanations for how fracture healing may progress. Concrete analogical models-Callus Analogs-were created using the MASON simulation toolkit. We designated a Target Region initial state within a characteristic tissue section of mouse tibia fracture at day-7 and posited a corresponding day-10 Target Region final state. The goal was to discover a coarse-grain analog mechanism that would enable the discretized initial state to transform itself into the corresponding Target Region final state, thereby providing an alternative way to study the healing process. One of nine quasi-autonomous Tissue Unit types is assigned to each grid space, which maps to an 80×80 μm region of the tissue section. All Tissue Units have an opportunity each time step to act based on individualized logic, probabilities, and information about adjacent neighbors. Action causes transition from one Tissue Unit type to another, and simulation through several thousand time steps generates a coarse-grain analog-a theory-of the healing process. We prespecified a minimum measure of success: simulated and actual Target Region states achieve ≥ 70% Similarity. We used an iterative refinement protocol to explore many combinations of Tissue Unit logic and action constraints. Workflows progressed through four stages of analog mechanisms. Similarities of 73-90% were achieved for Mechanisms 2-4. The range of Upper-Level similarities increased to 83-94% when we allowed for uncertainty about two Tissue Unit designations. We have demonstrated how Callus Analog experiments provide domain experts with a fresh medium and tools for thinking about and understanding the fracture healing process.

Concepts: Bone fracture, Healing, Semantics, Uncertainty, 2006 albums, Inductive reasoning, Bone healing, Semantic similarity


Titanium plates are widely used in clinical settings because of their high bone affinity. However, owing to their high elastic modulus, these plates are not suitable for bone repair since their proximity to the bone surface for prolonged periods can cause stress shielding, leading to bone embrittlement. In contrast, titanium fiber plates prepared by molding titanium fibers into plates by simultaneously applying compression and shear stress at normal room temperature can have an elastic modulus similar to that of bone cortex, and stress shielding will not occur even when the plate lies flush against the bone’s surface. Titanium fibers can form a porous structure suitable for cell adhesion and as a bone repair scaffold. A titanium fiber plate is combined with osteoblasts and shown that the titanium fiber plate is better able to facilitate bone tissue repair than the conventional titanium plate when implanted in rat bone defects. Capable of being used in close contact with bone for a long time, and even capable of promoting bone repair, titanium fiber plates have a wide range of applications, and are expected to make great contributions to clinical management of increasing bone diseases, including bone fracture repair and bone regenerative medicine.

Concepts: Bone, Bone fracture, Force, Tensile strength, Cortical bone, Young's modulus, Elasticity, Bone healing