SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Blue

199

Synesthesia is a phenomenon where a stimulus produces consistent extraordinary subjective experiences. A relatively common type of synesthesia involves perception of color when viewing letters (e.g. the letter ‘a’ always appears as light blue). In this study, we examine whether traits typically regarded as markers of synesthesia can be acquired by simply reading in color.

Concepts: Light, Color, Green, Blue, Purple, Qualia, Synesthesia, Azure

181

Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (β3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.

Concepts: Biology, Light, Photoreceptor cell, Blue, Red, Circadian rhythm, Spectrum, Visible spectrum

10

On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (10(6)) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.

Concepts: Water, Cyanide, Colloid, Potassium, Blue, Ferrocyanide, Prussian blue, Potassium ferrocyanide

2

Anthocyanins are some of the most widely occurring secondary metabolites in plants, responsible for the orange, red, purple, and blue colors of flowers and fruits and red colors of autumn leaves. These pigments accumulate in vacuoles, and their color is influenced by chemical decorations, vacuolar pH, the presence of copigments, and metal ions. Anthocyanins are usually soluble in the vacuole, but in some plants, they accumulate as discrete sub-vacuolar structures. Studies have distinguished intensely colored intra-vacuolar bodies observed in the cells of highly colored tissues, termed anthocyanic vacuolar inclusions (AVIs), from more globular, membrane-bound anthocyanoplasts. We describe a system in tobacco that adds additional decorations to the basic anthocyanin, cyanidin 3-O-rutinoside, normally formed by this species. Using this system, we have been able to establish which decorations underpin the formation of AVIs, the conditions promoting AVI formation, and, consequently, the mechanism by which they form.

Concepts: Cell, Organelle, Color, Blue, Red, Vacuole, Primary color, Plant cell

2

Virus B is a newly emerged viral strain for which there is no current treatment. Drug A was identified as a potential treatment for infection with virus B. In this pre-clinical phase of drug testing, the effects of drug A on survival after infection with virus B was tested. There was no difference in survival between control (dark blue) and drug A-treated, virus B-infected mice (green), but a significant difference in survival between control and virus B-infected mice without drug treatment (light blue, z-test for proportions P < 0.05, n = 30 in each group). The authors therefore concluded that drug A is effective in reducing mouse mortality due to virus B.

Concepts: Virus, Light, Strain, Hypothesis, Statistical hypothesis testing, Green, Blue, Null hypothesis

2

Optogenetic methods take advantage of photoswitches to control the activity of cellular proteins. Here, we completed a multi-directional engineering of the fungal photoreceptor Vivid to develop pairs of distinct photoswitches named Magnets. These new photoswitches were engineered to recognize each other based on the electrostatic interactions, thus preventing homodimerization and enhancing light-induced heterodimerization. Furthermore, we tuned the switch-off kinetics by four orders of magnitude and developed several variants, including those with substantially faster kinetics than any of the other conventional dimerization-based blue spectrum photoswitches. We demonstrate the utility of Magnets as powerful tools that can optogenetically manipulate molecular processes in biological systems.

Concepts: Protein, Medicine, Molecular biology, Biology, Engineering, Dimer, Blue, Elementary mathematics

2

Many lab studies have shown that colors can evoke powerful emotions and impact human behavior. Might these phenomena drive how we act online? A key research challenge for image-sharing communities is uncovering the mechanisms by which content spreads through the community. In this paper, we investigate whether there is link between color and diffusion. Drawing on a corpus of one million images crawled from Pinterest, we find that color significantly impacts the diffusion of images and adoption of content on image sharing communities such as Pinterest, even after partially controlling for network structure and activity. Specifically, Red, Purple and pink seem to promote diffusion, while Green, Blue, Black and Yellow suppress it. To our knowledge, our study is the first to investigate how colors relate to online user behavior. In addition to contributing to the research conversation surrounding diffusion, these findings suggest future work using sophisticated computer vision techniques. We conclude with a discussion on the theoretical, practical and design implications suggested by this work-e.g. design of engaging image filters.

Concepts: Color, Green, Blue, Red, White, Yellow, Primary color, Color wheel

1

Since at least the 17(th) century there has been the idea that there are four simple and perceptually pure “unique” hues: red, yellow, green, and blue, and that all other hues are perceived as mixtures of these four hues. However, sustained scientific investigation has not yet provided solid evidence for a neural representation that separates the unique hues from other colors. We measured event-related potentials elicited from unique hues and the ‘intermediate’ hues in between them. We find a neural signature of the unique hues 230 ms after stimulus onset at a post-perceptual stage of visual processing. Specifically, the posterior P2 component over the parieto-occipital lobe peaked significantly earlier for the unique than for the intermediate hues (Z = -2.9, p = 0.004). Having identified a neural marker for unique hues, fundamental questions about the contribution of neural hardwiring, language and environment to the unique hues can now be addressed.

Concepts: Visual system, Color, Green, Blue, Red, Event-related potential, Hue, Primary color

1

Light passing through or reflected from adjacent foliage provides a developing plant with information that is used to guide specific genetic and physiological processes. Changes in gene expression underlie adaptation to, or avoidance of, the light-compromised environment. These changes have been well described and are mostly attributed to a decrease in the red light to far-red light ratio and/or a reduction in blue light fluence rate. In most cases, these changes rely on the integration of red/far-red/blue light signals, leading to changes in phytohormone levels. Studies over the last decade have described distinct responses to green light and/or a shift of the blue-green, or red-green ratio. Responses to green light are typically low-light responses, suggesting that they may contribute to the adaptation to growth under foliage or within close proximity to other plants. This review summarizes the growth responses in artificially manipulated light environments with an emphasis on the roles of green wavebands. The information may be extended to understanding the influence of green light in shade avoidance responses as well as other plant developmental and physiological processes.

Concepts: Photosynthesis, Gene, Genetics, Gene expression, Organism, Blue, Red, Plants

0

Walsh’s A Theory Of Magnitude (ATOM) contends that we represent magnitudes such as number, space, time and luminance on a shared metric, such that “more” of one leads to the perception of “more” of the other (e.g. Walsh, 2003). In support of ATOM, participants have been shown to judge intervals between stimuli that are more discrepant in luminance as having a longer duration than intervals between stimuli whose luminance differs by a smaller degree (Xuan, Zhang, He, & Chen, 2007). We tested the potential limits to the ability of luminance to influence duration perception by investigating the possibility that the luminance-duration relationship might be interrupted by a concurrent change in the colour of that luminance. We showed native Greek and native English speakers sequences of stimuli that could be either light or dark versions of green or blue. Whereas for both groups a shift in green luminance does not comprise a categorical shift in colour, for Greek speakers shifts between light and dark blue cross a colour category boundary (ghalazio and ble respectively). We found that duration judgements were neither interrupted nor inflated by a shift in colour category. These results represent the first evidence that the influence of luminance change on duration perception is resistant to interference from discrete changes within the same perceptual input.

Concepts: Time, Physics, Light, Perception, Color, English language, Blue, Qualia