SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Blood glucose monitoring

168

This study was designed to evaluate accuracy, performance, and safety of the Dexcom (San Diego, CA) G4(®) Platinum continuous glucose monitoring (CGM) system (G4P) compared with the Dexcom G4 Platinum with Software 505 algorithm (SW505) when used as adjunctive management to blood glucose (BG) monitoring over a 7-day period in youth, 2-17 years of age, with diabetes.

Concepts: Nutrition, Glucose tolerance test, Diabetes, Glucose, Insulin, Blood glucose monitoring, Blood sugar, Diabetes mellitus

129

Published evaluations of sensor glucose monitoring use in insulin treated type 2 diabetes are limited. The aim of this study was to assess the impact of flash glucose-sensing technology as a replacement for self-monitoring of blood glucose (SMBG) over a 12-month period in participants with type 2 diabetes who were on intensive insulin therapy.

Concepts: Obesity, Blood glucose monitoring, Diabetes, Insulin therapies, Diabetes mellitus type 1, Diabetes mellitus type 2, Diabetes mellitus, Insulin

92

Background In multicenter studies, tight glycemic control targeting a normal blood glucose level has not been shown to improve outcomes in critically ill adults or children after cardiac surgery. Studies involving critically ill children who have not undergone cardiac surgery are lacking. Methods In a 35-center trial, we randomly assigned critically ill children with confirmed hyperglycemia (excluding patients who had undergone cardiac surgery) to one of two ranges of glycemic control: 80 to 110 mg per deciliter (4.4 to 6.1 mmol per liter; lower-target group) or 150 to 180 mg per deciliter (8.3 to 10.0 mmol per liter; higher-target group). Clinicians were guided by continuous glucose monitoring and explicit methods for insulin adjustment. The primary outcome was the number of intensive care unit (ICU)-free days to day 28. Results The trial was stopped early, on the recommendation of the data and safety monitoring board, owing to a low likelihood of benefit and evidence of the possibility of harm. Of 713 patients, 360 were randomly assigned to the lower-target group and 353 to the higher-target group. In the intention-to-treat analysis, the median number of ICU-free days did not differ significantly between the lower-target group and the higher-target group (19.4 days [interquartile range {IQR}, 0 to 24.2] and 19.4 days [IQR, 6.7 to 23.9], respectively; P=0.58). In per-protocol analyses, the median time-weighted average glucose level was significantly lower in the lower-target group (109 mg per deciliter [IQR, 102 to 118]; 6.1 mmol per liter [IQR, 5.7 to 6.6]) than in the higher-target group (123 mg per deciliter [IQR, 108 to 142]; 6.8 mmol per liter [IQR, 6.0 to 7.9]; P<0.001). Patients in the lower-target group also had higher rates of health care-associated infections than those in the higher-target group (12 of 349 patients [3.4%] vs. 4 of 349 [1.1%], P=0.04), as well as higher rates of severe hypoglycemia, defined as a blood glucose level below 40 mg per deciliter (2.2 mmol per liter) (18 patients [5.2%] vs. 7 [2.0%], P=0.03). No significant differences were observed in mortality, severity of organ dysfunction, or the number of ventilator-free days. Conclusions Critically ill children with hyperglycemia did not benefit from tight glycemic control targeted to a blood glucose level of 80 to 110 mg per deciliter, as compared with a level of 150 to 180 mg per deciliter. (Funded by the National Heart, Lung, and Blood Institute and others; HALF-PINT ClinicalTrials.gov number, NCT01565941 .).

Concepts: Diabetes, Blood glucose monitoring, Interquartile range, Median, Carbohydrate, Diabetes mellitus, Hyperglycemia, Blood sugar

46

We present a proof-of-concept demonstration of an all-printed temporary tattoo-based glucose sensor for noninvasive glycemic monitoring. The sensor represents the first example of an easy-to-wear flexible tattoo-based epidermal diagnostic device combining reverse iontophoretic extraction of interstitial glucose and an enzyme-based amperometric biosensor. In-vitro studies reveal the tattoo sensor’s linear response toward physiologically relevant glucose levels with negligible interferences from common coexisting electroactive species. The iontophoretic-biosensing tattoo platform is reduced to practice by applying the device on human subjects and monitoring variations in glycemic levels due to food consumption. Correlation of the sensor response with that of a commercial glucose meter underscores the promise of the tattoo sensor to detect glucose levels in a noninvasive fashion. Control on-body experiments demonstrate the importance of the reverse iontophoresis operation and validate the sensor specificity. This preliminary investigation indicates that the tattoo-based iontophoresis-sensor platform holds considerable promise for efficient diabetes management and can be extended toward noninvasive monitoring of other physiologically relevant analytes present in the interstitial fluid.

Concepts: Demonstration, Blood sugar, Glucose, Diabetes mellitus, Glucose meter, Blood glucose monitoring, Nutrition, Diabetes

36

Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo.

Concepts: Hypoglycemia, Blood glucose monitoring, Blood sugar, Carbohydrate, Nutrition, Diabetes, Diabetes mellitus, Insulin

28

Pursuit of a closed-loop artificial pancreas that automatically controls the blood glucose of individuals with type 1 diabetes has intensified during the past six years. Here we discuss the recent progress and challenges in the major steps towards a closed-loop system. Continuous insulin infusion pumps have been widely available for over two decades, but “smart pump” technology has made the devices easier to use and more powerful. Continuous glucose monitoring (CGM) technology has improved and the devices are more widely available. A number of approaches are currently under study for fully closed-loop systems; most manipulate only insulin, while others manipulate insulin and glucagon. Algorithms include on-off (for prevention of overnight hypoglycemia), proportional-integral-derivative (PID), model predictive control (MPC) and fuzzy logic based learning control. Meals cause a major “disturbance” to blood glucose, and we discuss techniques that our group has developed to predict when a meal is likely to be consumed and its effect. We further examine both physiology and device-related challenges, including insulin infusion set failure and sensor signal attenuation. Finally, we discuss the next steps required to make a closed-loop artificial pancreas a commercial reality.

Concepts: Blood glucose monitoring, Glucagon, Diabetes, Fuzzy logic, Insulin pump, Diabetes mellitus, Insulin, Control theory

27

Abstract Background: Systems for self-monitoring of blood glucose (SMBG) have to provide accurate and reproducible blood glucose (BG) values in order to ensure adequate therapeutic decisions by people with diabetes. Materials and Methods: Twelve SMBG systems were compared in a standardized manner under controlled laboratory conditions: nine systems were available on the German market and were purchased from a local pharmacy, and three systems were obtained from the manufacturer (two systems were available on the U.S. market, and one system was not yet introduced to the German market). System accuracy was evaluated following DIN EN ISO (International Organization for Standardization) 15197:2003. In addition, measurement reproducibility was assessed following a modified TNO (Netherlands Organization for Applied Scientific Research) procedure. Comparison measurements were performed with either the glucose oxidase method (YSI 2300 STAT Plus™ glucose analyzer; YSI Life Sciences, Yellow Springs, OH) or the hexokinase method (cobas(®) c111; Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s measurement procedure. Results: The 12 evaluated systems showed between 71.5% and 100% of the measurement results within the required system accuracy limits. Ten systems fulfilled with the evaluated test strip lot minimum accuracy requirements specified by DIN EN ISO 15197:2003. In addition, accuracy limits of the recently published revision ISO 15197:2013 were applied and showed between 54.5% and 100% of the systems' measurement results within the required accuracy limits. Regarding measurement reproducibility, each of the 12 tested systems met the applied performance criteria. Conclusions: In summary, 83% of the systems fulfilled with the evaluated test strip lot minimum system accuracy requirements of DIN EN ISO 15197:2003. Each of the tested systems showed acceptable measurement reproducibility. In order to ensure sufficient measurement quality of each distributed test strip lot, regular evaluations are required.

Concepts: Standardization, Glucose meter, Deutsches Institut für Normung, Blood glucose monitoring, Measurement, Psychometrics, International Organization for Standardization, Scientific method

26

Abstract Background: Closed-loop control of blood glucose levels in people with type 1 diabetes offers the potential to reduce the incidence of diabetes complications and reduce the patients' burden, particularly if meals do not need to be announced. We therefore tested a closed-loop algorithm that does not require meal announcement. Materials and Methods: A multiple model probabilistic predictive controller (MMPPC) was assessed on four patients, revised to improve performance, and then assessed on six additional patients. Each inpatient admission lasted for 32 h with five unannounced meals containing approximately 1 g/kg of carbohydrate per admission. The system used an Abbott Diabetes Care (Alameda, CA) Navigator(®) continuous glucose monitor (CGM) and Insulet (Bedford, MA) Omnipod(®) insulin pump, with the MMPPC implemented through the artificial pancreas system platform. The controller was initialized only with the patient’s total daily dose and daily basal pattern. Results: On a 24-h basis, the first cohort had mean reference and CGM readings of 179 and 167 mg/dL, respectively, with 53% and 62%, respectively, of readings between 70 and 180 mg/dL and four treatments for glucose values <70 mg/dL. The second cohort had mean reference and CGM readings of 161 and 142 mg/dL, respectively, with 63% and 78%, respectively, of the time spent euglycemic. There was one controller-induced hypoglycemic episode. For the 30 unannounced meals in the second cohort, the mean reference and CGM premeal, postmeal maximum, and 3-h postmeal values were 139 and 132, 223 and 208, and 168 and 156 mg/dL, respectively. Conclusions: The MMPPC, tested in-clinic against repeated, large, unannounced meals, maintained reasonable glycemic control with a mean blood glucose level that would equate to a mean glycated hemoglobin value of 7.2%, with only one controller-induced hypoglycemic event occurring in the second cohort.

Concepts: Sugar, Enzyme, Carbohydrate, Blood glucose monitoring, Insulin, Diabetes, Diabetes mellitus, Blood sugar

26

Glucose dehydrogenases have been highly promoted to high-accuracy blood glucose (BG) monitors. The flavin adenine dinucleotide glucose dehydrogenase (FAD-GDH) and mutant variant of quinoprotein glucose dehydorgenase (Mut. Q-GDH) are widely used in high-performance BG monitors for multi-patient use. Therefore we conducted accuracy evaluation of the GDH monitors, FAD-GDH-based GM700 and Mut. Q-GDH-based Performa.

Concepts: Riboflavin, Alcohol dehydrogenase, Dehydrogenase, Blood sugar, Blood glucose monitoring, Adenine, Adenosine triphosphate, FAD

26

Abstract Background: Through a retrospective database analysis, our study seeks to provide an understanding of the utilization of SMBG by insulin therapy and diabetes type and to estimate health care costs of blood glucose monitoring in the UK diabetes population. Methods: Data were obtained from the IMS LifeLink(™) Electronic Medical Record-Europe (EMR-EU) Database, a longitudinal database containing anonymised patient records from physician-practice data systems of office-based physicians in the UK. Depending on the insulin types used for type 1 and type 2 diabetes, patients were sub-categorized into one of four insulin regimen groups (basal, bolus, premixed, or basal-bolus). Frequency of blood glucose testing was assessed descriptively throughout the 12-month post-index period, and generalized linear models were used to evaluate the effect of baseline characteristics, including insulin type, on the likelihood of blood glucose test utilization. Healthcare resource utilization and costs for all-cause services were assessed by insulin type. Results: 8,322 type 1 and type 2 diabetes patients were identified with two insulin pharmacy records between January 1, 2009 and December 31, 2010. After applying study inclusion and exclusion criteria, a total of 2,676 (32.2%) insulin-treated diabetes mellitus patients in the UK were identified with the number of pharmacy blood glucose test strips averaging 771.1 (median 600). The glucose testing frequency was lowest among basal only insulin patients and premixed insulin patients (mean 576.2 [median 450] and mean 599.5 [median 500] respectively; non-significantly different) compared to other insulin types. Conclusion: Although the data did not capture the glucose frequency comprehensively, it varied significantly by insulin types, and was higher than what is recommended in the guidelines for patients with type 2 diabetes.

Concepts: Diabetes mellitus type 2, Blood sugar, Blood glucose monitoring, Glucose tolerance test, Diabetes, Diabetes mellitus type 1, Diabetes mellitus, Insulin