Discover the most talked about and latest scientific content & concepts.

Concept: Bivalvia


The “wooden-steps” hypothesis [Distel DL, et al. (2000) Nature 403:725-726] proposed that large chemosynthetic mussels found at deep-sea hydrothermal vents descend from much smaller species associated with sunken wood and other organic deposits, and that the endosymbionts of these progenitors made use of hydrogen sulfide from biogenic sources (e.g., decaying wood) rather than from vent fluids. Here, we show that wood has served not only as a stepping stone between habitats but also as a bridge between heterotrophic and chemoautotrophic symbiosis for the giant mud-boring bivalve Kuphus polythalamia This rare and enigmatic species, which achieves the greatest length of any extant bivalve, is the only described member of the wood-boring bivalve family Teredinidae (shipworms) that burrows in marine sediments rather than wood. We show that K. polythalamia harbors sulfur-oxidizing chemoautotrophic (thioautotrophic) bacteria instead of the cellulolytic symbionts that allow other shipworm species to consume wood as food. The characteristics of its symbionts, its phylogenetic position within Teredinidae, the reduction of its digestive system by comparison with other family members, and the loss of morphological features associated with wood digestion indicate that K. polythalamia is a chemoautotrophic bivalve descended from wood-feeding (xylotrophic) ancestors. This is an example in which a chemoautotrophic endosymbiosis arose by displacement of an ancestral heterotrophic symbiosis and a report of pure culture of a thioautotrophic endosymbiont.

Concepts: Algae, Bacteria, Evolution, Symbiosis, Endosymbiont, Hydrothermal vent, Bivalvia, Shipworm


Germ line segregation can occur during embryogenesis or after embryogenesis completion, with multipotent cells able to give rise to both germ and somatic cells in the developing juvenile or even in adulthood. These undifferentiated cells, in some animals, are self-renewing stem cells. In all these cell lineages, the same set of genes, among which vasa, appears to be expressed. We traced VASA expression during the peculiar gonad rebuilding of bivalves to verify its presence from undifferentiated germ cells to mature gametes in an animal taxon in which the mechanism of germ line establishment is still under investigation. We utilized antibodies produced against VASPH, VASA homolog of Ruditapes philippinarum (Subclass Heterodonta), to compare the known expression pattern of R. philippinarum to two species of the Subclass Pteriomorphia, Anadara kagoshimensis and Crassostrea gigas, and another species of the Subclass Heterodonta, Mya arenaria. The immunohistological data obtained support a conserved mechanism of proliferation of “primordial stem cells” among the simple columnar epithelium of the gut, as well as in the connective tissue, contributing to the seasonal gonad reconstitution. Given the taxonomic separation of the analyzed species, we suggest that the process could be shared in bivalve molluscs. The presence of germ cell precursors in the gut epithelium appears to be a feature in common with model organisms, such as mouse, fruit fly, and human. Thus, the comparative study of germ line establishment can add details on bivalve development, but can also help to clarify the role that VASA plays during germ cell specification.

Concepts: DNA, Gene, Organism, Developmental biology, Cellular differentiation, Bivalvia, Clam, Myoida


Bivalve molluscs are descendants of an early-Cambrian lineage superbly adapted to benthic filter feeding. Adaptations in form and behavior are well recognized, but the underlying molecular mechanisms are largely unknown. Here, we investigate the genome, various transcriptomes, and proteomes of the scallop Chlamys farreri, a semi-sessile bivalve with well-developed adductor muscle, sophisticated eyes, and remarkable neurotoxin resistance. The scallop’s large striated muscle is energy-dynamic but not fully differentiated from smooth muscle. Its eyes are supported by highly diverse, intronless opsins expanded by retroposition for broadened spectral sensitivity. Rapid byssal secretion is enabled by a specialized foot and multiple proteins including expanded tyrosinases. The scallop uses hepatopancreas to accumulate neurotoxins and kidney to transform to high-toxicity forms through expanded sulfotransferases, probably as deterrence against predation, while it achieves neurotoxin resistance through point mutations in sodium channels. These findings suggest that expansion and mutation of those genes may have profound effects on scallop’s phenotype and adaptation.

Concepts: DNA, Gene, Genetics, Natural selection, Muscular system, Bivalvia, Clam, Scallop


Molluscs (snails, octopuses, clams and their relatives) have a great disparity of body plans and, among the animals, only arthropods surpass them in species number. This diversity has made Mollusca one of the best-studied groups of animals, yet their evolutionary relationships remain poorly resolved. Open questions have important implications for the origin of Mollusca and for morphological evolution within the group. These questions include whether the shell-less, vermiform aplacophoran molluscs diverged before the origin of the shelled molluscs (Conchifera) or lost their shells secondarily. Monoplacophorans were not included in molecular studies until recently, when it was proposed that they constitute a clade named Serialia together with Polyplacophora (chitons), reflecting the serial repetition of body organs in both groups. Attempts to understand the early evolution of molluscs become even more complex when considering the large diversity of Cambrian fossils. These can have multiple dorsal shell plates and sclerites or can be shell-less but with a typical molluscan radula and serially repeated gills. To better resolve the relationships among molluscs, we generated transcriptome data for 15 species that, in combination with existing data, represent for the first time all major molluscan groups. We analysed multiple data sets containing up to 216,402 sites and 1,185 gene regions using multiple models and methods. Our results support the clade Aculifera, containing the three molluscan groups with spicules but without true shells, and they support the monophyly of Conchifera. Monoplacophora is not the sister group to other Conchifera but to Cephalopoda. Strong support is found for a clade that comprises Scaphopoda (tusk shells), Gastropoda and Bivalvia, with most analyses placing Scaphopoda and Gastropoda as sister groups. This well-resolved tree will constitute a framework for further studies of mollusc evolution, development and anatomy.

Concepts: Phylogenetics, Mollusca, Snail, Bivalvia, Clam, Cephalopod, Octopus, Monoplacophora


Uptake of seven contaminants regularly detected in surface waters and spanning a range of hydrophobicities (log Dow -1 to 5) was studied for two species of freshwater bivalves, the native mussel Anodonta californiensis and the invasive clam Corbicula fluminea. Batch systems were utilized to determine compound partitioning and flow-through systems, comparable to environmental conditions in effluent dominated surface waters, were used to determine uptake and depuration kinetics. Uptake of compounds was independent of bivalve type. Log BCF values were correlated with log Dow for non-ionized compounds with the highest BCF value obtained for triclocarban (TCC). TCC concentrations were reduced in the water column due to bivalve activity. Anionic compounds with low Dow values, i.e., clofibric acid and ibuprofen, were not removed from water, while the organic cation propranolol showed biouptake similar to TCC. Batch experiments supported compound uptake patterns observed in flow-through experiments. Contaminant removal from water was observed through accumulation in tissue or settling as excreted pseudofeces or feces. The outcomes of this study indicate the potential utility of bivalve augmentation to improve water quality by removing hydrophobic trace organic compounds found in natural systems.

Concepts: Water, Bivalves, Mollusca, Environmental science, Bivalvia, Mussel, Clam, Corbicula fluminea


In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar.

Concepts: Compressive strength, Bivalvia, Physical compression, Portland cement, Cement, Mortar, Concrete, Stucco


Trace metal concentrations in the muscle of the bivalve Villorita cyprinoides from the Cochin backwaters (southwest coast of India) were investigated during the monsoon, post-monsoon and pre-monsoon periods. The seasonal average ranges of metals (μg g(-1), dry weight) in the bivalve were as follows: Fe (18,532.44-28,267.05), Co (23.25-37.58), Ni (10.56-19.28), Cu (3.58-11.35), Zn (48.45-139.15), Cd (1.06-1.50) and Pb (3.05-4.35). The marginally elevated metal concentrations in bivalve muscles are probably related to high influx of metals as a result of pollution from the industries and agricultural fields with consequent increased bioavailability of metals to the bivalve. Evaluation of the risks to human health associated with consumption of the bivalves suggested that there is no health risk for moderate shellfish consumers. A regular and continuous biomonitoring program is recommended to establish V. cyprinoides as a bioindicator for assessing the effects of trace metal pollution and to identify future changes to conserve the “health” of this fragile ecosystem.

Concepts: Iron, Metal, Copper, Mollusca, Bivalvia, Mussel, Clam, Scallop


The periodic occurrence of Paralytic Shellfish Poisoning (PSP) toxins in UK surf clams and the recent move away from biological assays for PSP testing resulted in the need to determine method performance characteristics for the replacement analytical method in this species. With the requirement for laboratory reference materials to aid this validation together with known issues relating to toxin transformation in live clams and homogenised tissue, there was the need to assess the toxin transformation characteristics of PSP toxins in surf clam tissue. Initial work examined the rates of toxin transformation in UK surf clam tissue incubated with toxin standards, showing rapid transformation of N-sulfocarbamoyl toxins with slower transformation of carbamate toxins. Full transformational pathways were determined using a combination of three different analytical methods and confirmed the major expected transformations involving decarbamoylation, with some evidence for additional reaction pathways. Results obtained from the analysis of surf clam and oyster tissues incubated with varying concentrations of toxic Alexandrium algae highlighted expected transformation reactions, although significant differences were observed in the extent of the transformations amongst the range of toxins studied, with less efficient transformation of N-hydroxylated toxins as compared with other carbamate and N-sulfocarbamoyl toxins. Analysis of PSP-toxic incurred oyster, scallop and mussel tissues incubated with variable proportions of surf clam tissue showed large differences in the extent of the transformations. Total conversion of N-sulfocarbamoyl toxins was confirmed at low relative proportions of surf clam tissue in all three species, whereas transformation of carbamate toxins was found to occur only in the presence of higher proportions of surf clam tissue in oysters and mussels in comparison with scallops. Results enabled the production of three laboratory reference materials prepared following incubation of incurred homogenates with optimum proportions of surf clam tissue, resulting in materials containing a large number of PSP toxins. Stability experiments provided good preliminary evidence for the stability of these targeted materials under storage conditions. The work therefore provides both additional information relating to the transformational activity in UK surf clams and highlights a good potential method for the targeted production of reference materials which include a wider range of toxins than normally present in naturally incurred shellfish.

Concepts: Seafood, Bivalvia, Mussel, Shellfish, Clam, Scallop, Paralytic shellfish poisoning, Shellfish poisoning


Biomineralization processes in bivalve molluscs are still poorly understood. Here we provide an analysis of specifically expressed sequences from a mantle transcriptome of the blue mussel, Mytilus edulis. We then developed a novel, integrative shell injury assay to test, whether biomineralization candidate genes highly expressed in marginal and pallial mantle could be induced in central mantle tissue underlying the damaged shell areas. This experimental approach makes it possible to identify gene products that control the chemical micro-environment during calcification as well as organic matrix components. This is unlike existing methodological approaches that work retroactively to characterize calcification relevant molecules and are just able to examine organic matrix components that are present in completed shells. In our assay an orthogonal array of nine 1mm holes was drilled into the left valve, and mussels were suspended in net cages for 20, 29 and 36days to regenerate. Structural observations using stereo-microscopy, SEM and Raman spectroscopy revealed organic sheet synthesis (day 20) as the first step of shell-repair followed by the deposition of calcite crystals (days 20 and 29) and aragonite tablets (day 36). The regeneration period was characterized by time-dependent shifts in gene expression in left central mantle tissue underlying the injured shell, (i) increased expression of two tyrosinase isoforms (TYR3: 29-fold and TYR6: 5-fold) at day 20 with a decline thereafter, (ii) an increase in expression of a gene encoding a nacrein-like protein (max. 100-fold) on day 29. The expression of an acidic Asp-Ser-rich protein was enhanced during the entire regeneration process. This proof-of-principle study demonstrates that genes that are specifically expressed in pallial and marginal mantle tissue can be induced (4 out of 10 genes) in central mantle following experimental injury of the overlying shell. Our findings suggest that regeneration assays can be used systematically to better characterize gene products that are essential for distinct phases of the shell formation process, particularly those that are not incorporated into the organic shell matrix.

Concepts: DNA, Gene, Gene expression, Transcription, Mollusca, Bivalvia, Mussel, Gene product


High levels of fecal indicator bacteria, such as Escherichia coli, can be indicative of poor water quality. The use of shellfish to reduce eutrophication has been proposed, but application of bivalves to reduce bacterial levels has not been extensively reported. Removal of E. coli by the native freshwater mussel Anodonta californiensis was studied using laboratory batch systems and field-based flow-through systems. Batch systems were utilized to determine the fate and inactivation of E. coli after uptake by the mussel. Batch experiments demonstrated that uptake patterns followed first order kinetics and E. coli was inactivated with less than 5% of the initial colonies recoverable in fecal matter or tissue. Flow-through systems located at an urban impaired lake in San Francisco, CA were utilized to determine uptake kinetics under environmentally-relevant conditions. The bivalves maintained a 1-log removal of E. coli for the duration of exposure. The calculated uptake rates can be used in conjunction with hydrologic models to determine the number of bivalves needed to maintain removal of E. coli in different freshwater systems. The outcomes of this study support the use of native freshwater bivalves to achieve the co-benefits of rehabilitating a freshwater ecosystem and improving water quality via reduction of E. coli in contaminated freshwater systems.

Concepts: Bacteria, Gut flora, Escherichia coli, Water pollution, Proteobacteria, Bivalves, Bivalvia, Mussel