Discover the most talked about and latest scientific content & concepts.

Concept: Bird anatomy


Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing’s patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliers.

Concepts: Evolution, Bird, Dinosaur, Feather, Wing, Flight feather, Bird flight, Bird anatomy


Discoveries of bird-like theropod dinosaurs and basal avialans in recent decades have helped to put the iconic ‘Urvogel’ Archaeopteryx into context and have yielded important new data on the origin and early evolution of feathers. However, the biological context under which pennaceous feathers evolved is still debated. Here we describe a new specimen of Archaeopteryx with extensive feather preservation, not only on the wings and tail, but also on the body and legs. The new specimen shows that the entire body was covered in pennaceous feathers, and that the hindlimbs had long, symmetrical feathers along the tibiotarsus but short feathers on the tarsometatarsus. Furthermore, the wing plumage demonstrates that several recent interpretations are problematic. An analysis of the phylogenetic distribution of pennaceous feathers on the tail, hindlimb and arms of advanced maniraptorans and basal avialans strongly indicates that these structures evolved in a functional context other than flight, most probably in relation to display, as suggested by some previous studies. Pennaceous feathers thus represented an exaptation and were later, in several lineages and following different patterns, recruited for aerodynamic functions. This indicates that the origin of flight in avialans was more complex than previously thought and might have involved several convergent achievements of aerial abilities.

Concepts: Bird, Dinosaur, Feathered dinosaurs, Archaeopteryx, Feather, Dromaeosauridae, Maniraptora, Bird anatomy


Gross dissection is a widespread method for studying animal anatomy, despite being highly destructive and time-consuming. X-ray computed tomography (CT) has been shown to be a non-destructive alternative for studying anatomical structures. However, in the past it has been limited to only being able to visualise mineralised tissues. In recent years, morphologists have started to use traditional X-ray contrast agents to allow the visualisation of soft tissue elements in the CT context. The aim of this project is to assess the ability of contrast-enhanced micro-CT (╬╝CT) to construct a three-dimensional (3D) model of the musculoskeletal system of the bird wing and to quantify muscle geometry and any systematic changes due to shrinkage. We expect that this reconstruction can be used as an anatomical guide to the sparrowhawk wing musculature and form the basis of further biomechanical analysis of flight.

Concepts: Biology, Medical imaging, Radiography, Tissues, Radiology, Anatomy, Human anatomy, Bird anatomy


Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass(0.028), whilst a weak relationship exists in femora (mass(0.004)) and tibiotarsi (mass(0.004)). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls.

Concepts: Scale, Owl, Fossil, Musical scale, Scaling, Tytonidae, Bird anatomy, Heterodontosauridae


One of nature’s premier illustrations of adaptive evolution concerns the tight correspondence in birds between beak morphology and feeding behavior. In seed-crushing birds, beaks have been suggested to evolve at least in part to avoid fracture. Yet, we know little about mechanical relationships between beak shape, stress dissipation, and fracture avoidance. This study tests these relationships for Darwin’s finches, a clade of birds renowned for their diversity in beak form and function. We obtained anatomical data from micro-CT scans and dissections, which in turn informed the construction of finite element models of the bony beak and rhamphotheca. Our models offer two new insights. First, engineering safety factors are found to range between 1 and 2.5 under natural loading conditions, with the lowest safety factors being observed in species with the highest bite forces. Second, size-scaled finite element (FE) models reveal a correspondence between inferred beak loading profiles and observed feeding strategies (e.g. edge-crushing versus tip-biting), with safety factors decreasing for base-crushers biting at the beak tip. Additionally, we identify significant correlations between safety factors, keratin thickness at bite locations, and beak aspect ratio (depth versus length). These lines of evidence together suggest that beak shape indeed evolves to resist feeding forces.

Concepts: Evolution, Biology, Species, Bird, Charles Darwin, Finch, Bird anatomy, Beak


The most basal avians Archaeopteryx and Jeholornis have elongate reptilian tails. However, all other birds (Pygostylia) have an abbreviated tail that ends in a fused element called the pygostyle. In extant birds, this is typically associated with a fleshy structure called the rectricial bulb that secures the tail feathers (rectrices) [1]. The bulbi rectricium muscle controls the spread of the rectrices during flight. This ability to manipulate tail shape greatly increases flight function [2, 3]. The Jehol avifauna preserves the earliest known pygostylians and a diversity of rectrices. However, no fossil directly elucidates this important skeletal transition. Differences in plumage and pygostyle morphology between clades of Early Cretaceous birds led to the hypothesis that rectricial bulbs co-evolved with the plough-shaped pygostyle of the Ornithuromorpha [4]. A newly discovered pengornithid, Chiappeavis magnapremaxillo gen. et sp. nov., preserves strong evidence that enantiornithines possessed aerodynamic rectricial fans. The consistent co-occurrence of short pygostyle morphology with clear aerodynamic tail fans in the Ornithuromorpha, the Sapeornithiformes, and now the Pengornithidae strongly supports inferences that these features co-evolved with the rectricial bulbs as a “rectricial complex.” Most parsimoniously, rectricial bulbs are plesiomorphic to Pygostylia and were lost in confuciusornithiforms and some enantiornithines, although morphological differences suggest three independent origins.

Concepts: Bird, Chicken, Vertebra, Feather, Bird anatomy, Pygostyle, Ornithurae, Pygostylia


Laying hens housed in free-range systems have access to an outdoor range, and individual hens within a flock differ in their ranging behaviour. Whether there is a link between ranging and laying hen welfare remains unclear. We analysed the relationships between ranging by individual hens on a commercial free-range layer farm and behavioural, physiological and health measures of animal welfare. We hypothesised that hens that access the range more will be (1) less fearful in general and in response to novelty and humans, (2) have better health in terms of physical body condition and (3) have a reduced physiological stress response to behavioural tests of fear and health assessments than hens that use the range less. Using radio frequency identification tracking across two flocks, we recorded individual hens' frequency, duration and consistency of ranging. We also assessed how far hens ventured into the range based on three zones: 0 to 2.4, 2.4 to 11.4 or >11.4 m from the shed. We assessed hen welfare using a variety of measures including: tonic immobility, open field, novel object, human approach, and human avoidance (HAV) behavioural tests; stress-induced plasma corticosterone response and faecal glucocorticoid metabolites; live weight, comb colour, and beak, plumage, footpad, and keel bone condition. Range use was positively correlated with plasma corticosterone response, faecal glucocorticoid metabolites, and greater flight distance during HAV. Hens that used the range more, moved towards rather than away from the novel object more often than hens that ranged less. Distance ranged from the shed was significantly associated with comb colour and beak condition, in that hens with darker combs and more intact beaks ranged further. Overall the findings suggest that there is no strong link between outdoor range usage and laying hen welfare. Alternatively, it may be that hens that differed in their ranging behaviour showed few differences in measures of welfare because free-range systems provide hens with adequate choice to cope with their environment. Further research into the relationship between individual range access and welfare is needed to test this possibility.

Concepts: Anxiety, Chicken, Behavior, Stress, Human behavior, Evolutionary physiology, RFID, Bird anatomy


In 2008, clinical cases of short beak and dwarfism syndrome (SBDS) caused by Muscovy duck parvovirus (MDPV) infection were found in mule duck and Taiwan white duck farms in Fujian, China. A MDPV LH strain causing duck SBDS without tongue protrusion was isolated in this study. Phylogenetic analysis show that the MDPV LH strain was clustered together with other MDPV strains, but divergent from GPV isolates. Two major fragment deletions were found in the inverted terminal repeats (ITR) of MDPV LH similar to the ones in the ITR of MDPV GX5, YY and SAAS-SHNH strains. To investigate the pathogenicity of the MDPV LH strain, virus infection of young mule ducks was performed. The infected ducks showed SBDS symptoms including retard growth and shorten beaks without tongue protrusion. Atrophy of thymus, spleen and bursa of Fabricius was identified in the infected ducks. The results show that MDPV LH strain is moderately pathogenic to mule duck, leading to occurrence of SBDS. As far as we know, it is the first study showing that SBDS without tongue protrusion, and atrophy of thymus, spleen and bursa of Fabricius possibly associated with immunosuppression were found in the MDPV-infected ducks. The established duck-MDPV-SBDS system will help us to further work on the virus pathogenesis and develop efficacious vaccine against MDPV infection.

Concepts: Immune system, Virus, Infection, B cell, Hieronymus Fabricius, Muscovy Duck, Duck, Bird anatomy


The uropygial gland is a holocrine complex exclusive to birds that produces an oleaginous secretion (preen oil) whose function is still debated. Herein, I examine critically the evidence for the many hypotheses of potential functions of this gland. The main conclusion is that our understanding of this gland is still in its infancy. Even for functions that are considered valid by most researchers, real evidence is scarce. Although it seems clear that preen oil contributes to plumage maintenance, we do not know whether this is due to a role in reducing mechanical abrasion or in reducing feather degradation by keratinophilic organisms. Evidence for a function against pathogenic bacteria is mixed, as preen oil has been demonstrated to act against bacteria in vitro, but not in vivo. Nor is it clear whether preen oil can combat pathogenic bacteria on eggshells to improve hatching success. Studies on the effect of preen oil against dermatophytes are very scarce and there is no evidence of a function against chewing lice. It seems clear, however, that preen oil improves waterproofing, but it is unclear whether this acts by creating a hydrophobic layer or simply by improving plumage structure. Several hypotheses proposed for the function of preen oil have been poorly studied, such as reduction of drag in flight. Similarly, we do not know whether preen oil functions as repellent against predators or parasites, makes birds unpalatable, or functions to camouflage birds with ambient odours. On the other hand, a growing body of work shows the important implications of volatiles in preen oil with regard to social communication in birds. Moreover, preen oil clearly alters plumage colouration. Finally, studies examining the impact of preen oil on fitness are lacking, and the costs or limitations of preen-oil production also remain poorly known. The uropygial gland appears to have several non-mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures. Therefore, future studies should consider how the inevitable trade-offs among different functions drive the evolution of uropygial gland secretions.

Concepts: Bacteria, Evolution, Microbiology, Secretion, In vivo, Bird, Feather, Bird anatomy


Urbanization of Earth’s habitats has led to considerable loss of biodiversity, but the driving ecological mechanism(s) are not always clear. Vertebrates like birds typically experience urban alterations to diet, habitat availability, and levels of predation or competition, but may also be exposed to greater or more pathogenic communities of microbes. Birds have been popular subjects of urban ecological research but, to our knowledge, no study has assessed how urban conditions influence the microbial communities on bird plumage. Birds carry a large variety of microorganisms on their plumage and some of them have the capacity to degrade feather keratin and alter plumage integrity. To limit the negative effects of these feather-degrading bacteria, birds coat their feathers with preen gland secretions containing antibacterial substances. Here we examined urban-rural variation in feather microbial abundance and preen gland size in house finches (Haemorhous mexicanus). We found that, although urban and rural finches carry similar total-cultivable microbial loads on their plumage, the abundance of feather-degrading bacteria was on average three times higher on the plumage of urban birds. We also found an increase in preen gland size along the gradient of urbanization, suggesting that urban birds may coat their feathers with more preen oil to limit the growth or activity of feather-degrading microbes. Given that greater investment in preening is traded-off against other immunological defenses and that feather-degrading bacteria can alter key processes like thermoregulation, aerodynamics, and coloration, our findings highlight the importance of plumage microbes and microbial defenses on the ecology of urban birds.

Concepts: Archaea, Bacteria, Microbiology, Bird, Microorganism, Feather, Plumage, Bird anatomy