Discover the most talked about and latest scientific content & concepts.

Concept: Biometrics


The performance of conventional minutiae-based fingerprint authentication algorithms degrades significantly when dealing with low quality fingerprints with lots of cuts or scratches. A similar degradation of the minutiae-based algorithms is observed when small overlapping areas appear because of the quite narrow width of the sensors. Based on the detection of minutiae, Scale Invariant Feature Transformation (SIFT) descriptors are employed to fulfill verification tasks in the above difficult scenarios. However, the original SIFT algorithm is not suitable for fingerprint because of: (1) the similar patterns of parallel ridges; and (2) high computational resource consumption. To enhance the efficiency and effectiveness of the algorithm for fingerprint verification, we propose a SIFT-based Minutia Descriptor (SMD) to improve the SIFT algorithm through image processing, descriptor extraction and matcher. A two-step fast matcher, named improved All Descriptor-Pair Matching (iADM), is also proposed to implement the 1:N verifications in real-time. Fingerprint Identification using SMD and iADM (FISiA) achieved a significant improvement with respect to accuracy in representative databases compared with the conventional minutiae-based method. The speed of FISiA also can meet real-time requirements.

Concepts: Algorithm, Fingerprint Verification Competition, Better, Biometrics, Scale-invariant feature transform, Computational complexity theory, Improve, Fingerprint


Biometric recognition is currently implemented in several authentication contexts, most recently in mobile devices where it is expected to complement or even replace traditional authentication modalities such as PIN (Personal Identification Number) or passwords. The assumed convenience characteristics of biometrics are transparency, reliability and ease-of-use, however, the question of whether biometric recognition is as intuitive and straightforward to use is open to debate. Can biometric systems make some tasks easier for people with accessibility concerns? To investigate this question, an accessibility evaluation of a mobile app was conducted where test subjects withdraw money from a fictitious ATM (Automated Teller Machine) scenario. The biometric authentication mechanisms used include face, voice, and fingerprint. Furthermore, we employed traditional modalities of PIN and pattern in order to check if biometric recognition is indeed a real improvement. The trial test subjects within this work were people with real-life accessibility concerns. A group of people without accessibility concerns also participated, providing a baseline performance. Experimental results are presented concerning performance, HCI (Human-Computer Interaction) and accessibility, grouped according to category of accessibility concern. Our results reveal links between individual modalities and user category establishing guidelines for future accessible biometric products.

Concepts: Password, Biometrics in schools, Automated teller machine, Access control, Fingerprint recognition, Authentication, Biometrics, Personal identification number


Gait recognition can potentially provide a noninvasive and effective biometric authentication from a distance. However, the performance of gait recognition systems will suffer in real surveillance scenarios with multiple interacting individuals and where the camera is usually placed at a significant angle and distance from the floor. We present a methodology for view-invariant monocular 3-D human pose tracking in man-made environments in which we assume that observed people move on a known ground plane. First, we model 3-D body poses and camera viewpoints with a low dimensional manifold and learn a generative model of the silhouette from this manifold to a reduced set of training views. During the online stage, 3-D body poses are tracked using recursive Bayesian sampling conducted jointly over the scene’s ground plane and the pose-viewpoint manifold. For each sample, the homography that relates the corresponding training plane to the image points is calculated using the dominant 3-D directions of the scene, the sampled location on the ground plane and the sampled camera view. Each regressed silhouette shape is projected using this homographic transformation and is matched in the image to estimate its likelihood. Our framework is able to track 3-D human walking poses in a 3-D environment exploring only a 4-D state space with success. In our experimental evaluation, we demonstrate the significant improvements of the homographic alignment over a commonly used similarity transformation and provide quantitative pose tracking results for the monocular sequences with a high perspective effect from the CAVIAR dataset.

Concepts: Biometrics, Camera, Möbius transformation, Dimension, Facial recognition system, Track and field athletics, Manifold, Gait analysis


Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject’s being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.

Concepts: Electromyography, Biometric passport, Password, Person, Access control, Biometrics


Over the past few decades the possibility to capture real-time data from road cyclists has drastically improved. Given the increasing pressure for improved transparency and openness, there has been an increase in publication of cyclists' physiological and performance data. Recently, it has been suggested that the use of such performance biometrics may be used to strengthen the sensitivity and applicability of the Athlete Biological Passport (ABP) and aid in the fight against doping. This is an interesting concept which has merit, although there are several important factors that need to be considered. These factors include accuracy of the data collected and validity (and reliability) of the subsequent performance modeling. In order to guarantee high quality standards, the implementation of well-structured Quality-Systems within sporting organizations should be considered, and external certifications may be required. Various modeling techniques have been developed, many of which are based on fundamental intensity/time relationships. These models have increased our understanding of performance but are currently limited in their application, for example due to the largely unaccounted effects of environmental factors such as, heat and altitude. In conclusion, in order to use power data as a performance biometric to be integrated in the biological passport, a number of actions must be taken to ensure accuracy of the data and better understand road cycling performance in the field. This article aims to outline considerations in the quantification of cycling performance, also presenting an alternative method (i.e., monitoring race results) to allow for determination of unusual performance improvements.

Concepts: Cycling, Biometrics, Sensitivity and specificity, Reliability, Psychometrics, Improve, Biometric passport, Better


Iris as a biometric identifier is assumed to be stable over a period of time. However, some researchers have observed that for long time lapse, the genuine match score distribution shifts towards the impostor score distribution and the performance of iris recognition reduces. The main purpose of this study is to determine if the shift in genuine scores can be attributed to aging or not. The experiments are performed on the two publicly available iris aging databases namely, ND-Iris-Template-Aging-2008-2010 and ND-TimeLapseIris-2012 using a commercial matcher, VeriEye. While existing results are correct about increase in false rejection over time, we observe that it is primarily due to the presence of other covariates such as blur, noise, occlusion, and pupil dilation. This claim is substantiated with quality score comparison of the gallery and probe pairs.

Concepts: Periodization, Philosophy of science, Hypothesis, Time, Biometrics, Scientific method, Eye, Iris recognition


In recent years, safer and more reliable biometric methods have been developed. Apart from the need for enhanced security, the media and entertainment sectors have also been applying biometrics in the emerging market of user-adaptable objects/systems to make these systems more user-friendly. However, the complexity of some state-of-the-art biometric systems (e.g., iris recognition) or their high false rejection rate (e.g., fingerprint recognition) is neither compatible with the simple hardware architecture required by reduced-size devices nor the new trend of implementing smart objects within the dynamic market of the Internet of Things (IoT). It was recently shown that an individual can be recognized by extracting features from their electrocardiogram (ECG). However, most current ECG-based biometric algorithms are computationally demanding and/or rely on relatively large (several seconds) ECG samples, which are incompatible with the aforementioned application fields. Here, we present a computationally low-cost method (patent pending), including simple mathematical operations, for identifying a person using only three ECG morphology-based characteristics from a single heartbeat. The algorithm was trained/tested using ECG signals of different duration from the Physionet database on more than 60 different training/test datasets. The proposed method achieved maximal averaged accuracy of 97.450% in distinguishing each subject from a ten-subject set and false acceptance and rejection rates (FAR and FRR) of 5.710±1.900% and 3.440±1.980%, respectively, placing Beat-ID in a very competitive position in terms of the FRR/FAR among state-of-the-art methods. Furthermore, the proposed method can identify a person using an average of 1.020 heartbeats. It therefore has FRR/FAR behavior similar to obtaining a fingerprint, yet it is simpler and requires less expensive hardware. This method targets low-computational/energy-cost scenarios, such as tiny wearable devices (e.g., a smart object that automatically adapts its configuration to the user). A hardware proof-of-concept implementation is presented as an annex to this paper.

Concepts: Heartbeats, Hardware, Patent pending, Electrocardiography, Biometrics in schools, Fingerprint recognition, Iris recognition, Biometrics


Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

Concepts: Home, Biometrics, The Point, Machine learning


Validation of choroidal thickness and other biometrics measured by spectral domain optical coherence tomography (SD-OCT) in predicting lacquer cracks formation in highly myopic eyes.

Concepts: Tomography, Biometrics, Computer science, Presbyopia, Lens, Optics, Optical coherence tomography, Myopia


The potential of mHealth technologies in the care of patients with diabetes and other chronic conditions has captured the attention of clinicians and researchers. Efforts to date have incorporated a variety of tools and techniques, including Web-based portals, short message service (SMS) text messaging, remote collection of biometric data, electronic coaching, electronic-based health education, secure email communication between visits, and electronic collection of lifestyle and quality-of-life surveys. Each of these tools, used alone or in combination, have demonstrated varying degrees of effectiveness. Some of the more promising results have been demonstrated using regular collection of biometric devices, SMS text messaging, secure email communication with clinical teams, and regular reporting of quality-of-life variables. In this study, we seek to incorporate several of the most promising mHealth capabilities in a patient-centered medical home (PCMH) workflow.

Concepts: Communication, Message, Instant messaging, Diabetes mellitus type 2, Biometrics, SMS, Text messaging, Short Message Service