Discover the most talked about and latest scientific content & concepts.

Concept: Biological interaction


Experiments have shown that interspecific interactions within consumer guilds can alter patterns of distribution, abundance and size of species. Plastic behavioural responses can be modulated by agonistic interactions. In many cases, consumers compete for space and shelters, and these interactions change the manner in which they exploit food. This study investigates the consequences of competition in the spatial and temporal organization of behaviour of intertidal grazers, which share algal resources and the use of rock crevices while resting, but exhibit different body sizes, spatial behaviour and foraging modes. We evaluate interaction strength between small gregarious Siphonaria lessoni and the larger territorial keyhole limpet Fissurella crassa and between S. lessoni and the medium-size gregarious chiton Chiton granosus. Using field manipulations and artificial arenas in the laboratory, we tested whether the use of crevices, micro-spatial distribution and activity are modified by the density of conspecifics and the presence of heterospecifics. Our results show that small-scale spatial segregation observed in the field between S. lessoni and C. granosus result from species-specific differences in habitat use. In turn, we found evidence that spatial segregation between F. crassa and S. lessoni results from highly asymmetric interference competition in the use of shelters. The presence of F. crassa reduced the use of crevices and growth rates of S. lessoni. Effects on growth rates are assumed to result from exposure to harsh environmental conditions rather than food limitation. Thus, neither gregarious behaviour nor differences in activity were sufficient to prevent competition with the larger grazer. Our study illustrates the importance of competition for shelters, which results in behavioural changes of the smaller-sized species, and how these plastic responses can translate into differences in growth rates. Use of shelters can thus be modulated by environmental conditions in a species-specific as well as an interactive manner within consumers' guilds.

Concepts: Competition, Interspecific competition, Intertidal zone, Biological interactions, Biological interaction, Limpet, Fissurellidae


Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.

Concepts: Fish, Ecology, Coral reef, Population density, Biological interaction, Scorpaenidae, Pterois, Lionfish


Little is known about venom in young developmental stages of animals. The appearance of toxins and stinging cells during early embryonic stages in the sea anemone Nematostellavectensis suggests that venom is already expressed in eggs and larvae of this species. Here we harness transcriptomic, biochemical and transgenic tools to study venom production dynamics in Nematostella. We find that venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings can be explained by the vastly different interspecific interactions of each life stage, as individuals develop from a miniature non-feeding mobile planula to a larger sessile polyp that predates on other animals and interact differently with predators. Indeed, behavioral assays involving prey, predators and Nematostella are consistent with this hypothesis. Further, the results of this work suggest a much wider and dynamic venom landscape than initially appreciated in animals with a complex life cycle.

Concepts: Predation, Animal, Symbiosis, Coral, Cnidaria, Polyp, Sea anemone, Biological interaction


Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

Concepts: Plant, Water, Predation, Symbiosis, Parasitism, Ant, Mutualism, Biological interaction


Intransitivity is a property of connected, oriented graphs representing species interactions that may drive their coexistence even in the presence of competition, the standard example being the three species Rock-Paper-Scissors game. We consider here a generalization with four species, the minimum number of species allowing other interactions beyond the single loop (one predator, one prey). We show that, contrary to the mean field prediction, on a square lattice the model presents a transition, as the parameter setting the rate at which one species invades another changes, from a coexistence to a state in which one species gets extinct. Such a dependence on the invasion rates shows that the interaction graph structure alone is not enough to predict the outcome of such models. In addition, different invasion rates permit to tune the level of transitiveness, indicating that for the coexistence of all species to persist, there must be a minimum amount of intransitivity.

Concepts: Game theory, Algebraic structure, Model theory, Arithmetic mean, Real number, Graph theory, Graph, Biological interaction


In diverse tropical webs, trophic cascades are presumed to be rare, as species interactions may dampen top-down control and reduce their prevalence. To test this hypothesis, we used an open experimental design in the Galápagos rocky subtidal that enabled a diverse guild of fish species, in the presence of each other and top predators (sea lions and sharks), to attack two species of sea urchins grazing on benthic algae. Time-lapse photography of experiments on natural and experimental substrates revealed strong species identity effects: only two predator species-blunthead triggerfish (Pseudobalistes naufragium) and finescale triggerfish (Balistes polylepis)-drove a diurnal trophic cascade extending to algae, and they preferred large pencil urchins (Eucidaris galapagensis) over green urchins (Lytechinus semituberculatus). Triggerfish predation effects were strong, causing a 24-fold reduction of pencil urchin densities during the initial 21 hours of a trophic cascade experiment. A trophic cascade was demonstrated for pencil urchins, but not for green urchins, by significantly higher percent cover of urchin-grazed algae in cages that excluded predatory fish than in predator access (fence) treatments. Pencil urchins were more abundant at night when triggerfish were absent, suggesting that this species persists by exploiting a nocturnal predation refuge. Time-series of pencil urchin survivorship further demonstrated per capita interference effects of hogfish and top predators. These interference effects respectively weakened and extended the trophic cascade to a fourth trophic level through behavioral modifications of the triggerfish-urchin interaction. We conclude that interference behaviors capable of modifying interaction strength warrant greater attention as mechanisms for altering top-down control, particularly in speciose food webs.

Concepts: Predation, Ecology, Experiment, Lion, Trophic level, Food chain, Apex predator, Biological interaction


Predator-prey relationships are integral to ecosystem stability and functioning. These relationships are, however, difficult to maintain in protected areas where large predators are increasingly being reintroduced and confined. Where predators make kills has a profound influence on their role in ecosystems, but the relative importance of environmental variables in determining kill sites, and how these might vary across ecosystems is poorly known. We investigated kill sites for lions in South Africa’s thicket biome, testing the importance of vegetation structure for kill site locations compared to other environmental variables. Kill sites were located over four years using GPS telemetry and compared to non-kill sites that had been occupied by lions, as well as to random sites within lion ranges. Measurements of 3D vegetation structure obtained from Light Detection and Ranging (LiDAR) were used to calculate the visible area (viewshed) around each site and, along with wind and moonlight data, used to compare kill sites between lion sexes, prey species and prey sexes. Viewshed area was the most important predictor of kill sites (sites in dense vegetation were twice as likely to be kill sites compared to open areas), followed by wind speed and, less so, moonlight. Kill sites for different prey species varied with vegetation structure, and male prey were killed when wind speeds were higher compared to female prey of the same species. Our results demonstrate that vegetation structure is an important component of predator-prey interactions, with varying effects across ecosystems. Such differences require consideration in terms of the ecological roles performed by predators, and in predator and prey conservation.

Concepts: Predation, Ecology, Symbiosis, Lotka–Volterra equation, Lion, Dog, Biome, Biological interaction


Because virtually all organisms compete with others in their social environment, mechanisms that reduce conflict between interacting individuals are crucial for the evolution of stable families, groups, and societies. Here, we tested whether costs of social conflict over territorial space between Seychelles warblers (Acrocephalus sechellensis) are mitigated by kin-selected (genetic relatedness) or mutualistic (social familiarity) mechanisms. By measuring longitudinal changes in individuals' body mass and telomere length, we demonstrated that the fitness costs of territoriality are driven by a complex interplay between relatedness, familiarity, local density, and sex. Physical fights were less common at territory boundaries shared between related or familiar males. In line with this, male territory owners gained mass when living next to related or familiar males and also showed less telomere attrition when living next to male kin. Importantly, these relationships were strongest in high-density areas of the population. Males also had more rapid telomere attrition when living next to unfamiliar male neighbors, but mainly when relatedness to those neighbors was also low. In contrast, neither kinship nor familiarity was linked to body mass or telomere loss in female territory owners. Our results indicate that resolving conflict over territorial space through kin-selected or mutualistic pathways can reduce both immediate energetic costs and permanent somatic damage, thus providing an important mechanism to explain fine-scale population structure and cooperation between different social units across a broad range of taxa.

Concepts: Male, Female, Sociology, Sex, Biological interaction, Territory, Acrocephalus


Virus population growth depends on contacts between viruses and their hosts. It is often unclear how sufficient contacts are made between viruses and their specific hosts to generate spikes in viral abundance. Here, we show that copepods, acting as predators, can bring aquatic viruses and their algal hosts into contact. Specifically, predation of the protist Paramecium bursaria by copepods resulted in a >100-fold increase in the number of chloroviruses in 1 d. Copepod predation can be seen as an ecological “catalyst” by increasing contacts between chloroviruses and their hosts, zoochlorellae (endosymbiotic algae that live within paramecia), thereby facilitating viral population growth. When feeding, copepods passed P. bursaria through their digestive tract only partially digested, releasing endosymbiotic algae that still supported viral reproduction and resulting in a virus population spike. A simple predator-prey model parameterized for copepods consuming protists generates cycle periods for viruses consistent with those observed in natural ponds. Food webs are replete with similar symbiotic organisms, and we suspect the predator catalyst mechanism is capable of generating blooms for other endosymbiont-targeting viruses.

Concepts: Predation, Ecology, Symbiosis, Lotka–Volterra equation, Paramecium, Zooplankton, Biological interaction, Paramecium bursaria


Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems.

Concepts: Biology, Predation, Ecology, Affect, Hunting, Inuit, Arctic Ocean, Biological interaction