Discover the most talked about and latest scientific content & concepts.

Concept: Biodiversity


The Night Frog genus Nyctibatrachus (Family Nyctibatrachidae) represents an endemic anuran lineage of the Western Ghats Biodiversity Hotspot, India. Until now, it included 28 recognised species, of which more than half were described recently over the last five years. Our amphibian explorations have further revealed the presence of undescribed species of Nights Frogs in the southern Western Ghats. Based on integrated molecular, morphological and bioacoustic evidence, seven new species are formally described here as Nyctibatrachus athirappillyensis sp. nov., Nyctibatrachus manalari sp. nov., Nyctibatrachus pulivijayani sp. nov., Nyctibatrachus radcliffei sp. nov., Nyctibatrachus robinmoorei sp. nov., Nyctibatrachus sabarimalai sp. nov. and Nyctibatrachus webilla sp. nov., thereby bringing the total number of valid Nyctibatrachus species to 35 and increasing the former diversity estimates by a quarter. Detailed morphological descriptions, comparisons with other members of the genus, natural history notes, and genetic relationships inferred from phylogenetic analyses of a mitochondrial dataset are presented for all the new species. Additionally, characteristics of male advertisement calls are described for four new and three previously known species. Among the new species, six are currently known to be geographically restricted to low and mid elevation regions south of Palghat gap in the states of Kerala and Tamil Nadu, and one is probably endemic to high-elevation mountain streams slightly northward of the gap in Tamil Nadu. Interestingly, four new species are also among the smallest known Indian frogs. Hence, our discovery of several new species, particularly of easily overlooked miniaturized forms, reiterates that the known amphibian diversity of the Western Ghats of India still remains underestimated.

Concepts: Biodiversity, India, Tamil Nadu, Amphibian, Frog, Western Ghats, Kerala


True river dolphins are some of the rarest and most endangered of all vertebrates. They comprise relict evolutionary lineages of high taxonomic distinctness and conservation value, but are afforded little protection. We report the discovery of a new species of a river dolphin from the Araguaia River basin of Brazil, the first such discovery in nearly 100 years. The species is diagnosable by a series of molecular and morphological characters and diverged from its Amazonian sister taxon 2.08 million years ago. The estimated time of divergence corresponds to the separation of the Araguaia-Tocantins basin from the Amazon basin. This discovery highlights the immensity of the deficit in our knowledge of Neotropical biodiversity, as well as vulnerability of biodiversity to anthropogenic actions in an increasingly threatened landscape. We anticipate that this study will provide an impetus for the taxonomic and conservation reanalysis of other taxa shared between the Araguaia and Amazon aquatic ecosystems, as well as stimulate historical biogeographical analyses of the two basins.

Concepts: Biodiversity, Species, Ecology, Drainage basin, Amazon River, Brazil, Amazon Basin, Amazon Rainforest


In June 2007, a previously undescribed monkey known locally as “lesula” was found in the forests of the middle Lomami Basin in central Democratic Republic of Congo (DRC). We describe this new species as Cercopithecus lomamiensis sp. nov., and provide data on its distribution, morphology, genetics, ecology and behavior. C. lomamiensis is restricted to the lowland rain forests of central DRC between the middle Lomami and the upper Tshuapa Rivers. Morphological and molecular data confirm that C. lomamiensis is distinct from its nearest congener, C. hamlyni, from which it is separated geographically by both the Congo (Lualaba) and the Lomami Rivers. C. lomamiensis, like C. hamlyni, is semi-terrestrial with a diet containing terrestrial herbaceous vegetation. The discovery of C. lomamiensis highlights the biogeographic significance and importance for conservation of central Congo’s interfluvial TL2 region, defined from the upper Tshuapa River through the Lomami Basin to the Congo (Lualaba) River. The TL2 region has been found to contain a high diversity of anthropoid primates including three forms, in addition to C. lomamiensis, that are endemic to the area. We recommend the common name, lesula, for this new species, as it is the vernacular name used over most of its known range.

Concepts: Biodiversity, Ecology, Primate, Democratic Republic of the Congo, Republic, Rainforest, Central Africa, Congo River


Brachycephalus (Anura: Brachycephalidae) is a remarkable genus of miniaturized frogs of the Brazilian Atlantic Rainforest. Many of its species are highly endemic to cloud forests, being found only on one or a few mountaintops. Such level of microendemism might be caused by their climatic tolerance to a narrow set of environmental conditions found only in montane regions. This restriction severely limits the chance of discovery of new species, given the difficulty of exploring these inaccessible habitats. Following extensive fieldwork in montane areas of the southern portion of the Atlantic Rainforest, in this study we describe seven new species of Brachycephalus from the states of Paraná and Santa Catarina, southern Brazil. These species can be distinguished from one another based on coloration and the level of rugosity of the skin in different parts of their body. These discoveries increase considerably the number of described species of Brachycephalus in southern Brazil.

Concepts: Biodiversity, Atlantic Ocean, Forest, Brazil, Montane, Florianópolis, German Brazilian, Joinville


Climate change and fisheries are transforming the oceans, but we lack a complete understanding of their ecological impact [1-3]. Environmental degradation can cause maladaptive habitat selection, inducing ecological traps with profound consequences for biodiversity [4-6]. However, whether ecological traps operate in marine systems is unclear [7]. Large marine vertebrates may be vulnerable to ecological traps [6], but their broad-scale movements and complex life histories obscure the population-level consequences of habitat selection [8, 9]. We satellite tracked postnatal dispersal in African penguins (Spheniscus demersus) from eight sites across their breeding range to test whether they have become ecologically trapped in the degraded Benguela ecosystem. Bayesian state-space and habitat models show that penguins traversed thousands of square kilometers to areas of low sea surface temperatures (14.5°C-17.5°C) and high chlorophyll-a (∼11 mg m(-3)). These were once reliable cues for prey-rich waters, but climate change and industrial fishing have depleted forage fish stocks in this system [10, 11]. Juvenile penguin survival is low in populations selecting degraded areas, and Bayesian projection models suggest that breeding numbers are ∼50% lower than if non-impacted habitats were used, revealing the extent and effect of a marine ecological trap for the first time. These cascading impacts of localized forage fish depletion-unobserved in studies on adults-were only elucidated via broad-scale movement and demographic data on juveniles. Our results support suspending fishing when prey biomass drops below critical thresholds [12, 13] and suggest that mitigation of marine ecological traps will require matching conservation action to the scale of ecological processes [14].

Concepts: Biodiversity, Demography, Fish, Ecology, Climate, Ecosystem, Ocean, Sea surface temperature


More than US$21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List-6% of all these highly threatened species-likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the world’s most imperiled fauna.

Concepts: Biodiversity, Conservation biology, Evolution, Species, Animal, Endangered species, Extinction, IUCN Red List


An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.

Concepts: Biodiversity, Plant, Ecology, Ecosystem, Endangered species, Extinction, Ecological economics, IUCN Red List


Human language can express limitless meanings from a finite set of words based on combinatorial rules (i.e., compositional syntax). Although animal vocalizations may be comprised of different basic elements (notes), it remains unknown whether compositional syntax has also evolved in animals. Here we report the first experimental evidence for compositional syntax in a wild animal species, the Japanese great tit (Parus minor). Tits have over ten different notes in their vocal repertoire and use them either solely or in combination with other notes. Experiments reveal that receivers extract different meanings from ‘ABC’ (scan for danger) and ’D' notes (approach the caller), and a compound meaning from ‘ABC-D’ combinations. However, receivers rarely scan and approach when note ordering is artificially reversed (’D-ABC'). Thus, compositional syntax is not unique to human language but may have evolved independently in animals as one of the basic mechanisms of information transmission.

Concepts: Biodiversity, Conservation biology, Species, Bird, Linguistics, Great Tit, Parus, Japanese Tit


So far, conservation scientists have paid little attention to synthetic biology; this is unfortunate as the technology is likely to transform the operating space within which conservation functions, and therefore the prospects for maintaining biodiversity into the future.

Concepts: Time, Biodiversity, Evolution, Species, Ecology, Natural environment, Science, Problem solving


Speciation events often occur in rapid bursts of diversification, but the ecological and genetic factors that promote these radiations are still much debated. Using whole transcriptomes from all 13 species in the ecologically and reproductively diverse wild tomato clade (Solanum sect. Lycopersicon), we infer the species phylogeny and patterns of genetic diversity in this group. Despite widespread phylogenetic discordance due to the sorting of ancestral variation, we date the origin of this radiation to approximately 2.5 million years ago and find evidence for at least three sources of adaptive genetic variation that fuel diversification. First, we detect introgression both historically between early-branching lineages and recently between individual populations, at specific loci whose functions indicate likely adaptive benefits. Second, we find evidence of lineage-specific de novo evolution for many genes, including loci involved in the production of red fruit color. Finally, using a “PhyloGWAS” approach, we detect environment-specific sorting of ancestral variation among populations that come from different species but share common environmental conditions. Estimated across the whole clade, small but substantial and approximately equal fractions of the euchromatic portion of the genome are inferred to contribute to each of these three sources of adaptive genetic variation. These results indicate that multiple genetic sources can promote rapid diversification and speciation in response to new ecological opportunity, in agreement with our emerging phylogenomic understanding of the complexity of both ancient and recent species radiations.

Concepts: Gene, Genetics, Biodiversity, Evolution, Biology, Species, Phylogenetics, Solanum