Discover the most talked about and latest scientific content & concepts.

Concept: Bicarbonate


Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

Concepts: Photosynthesis, Oxygen, Carbon dioxide, Carbon, Climate change, Bicarbonate, Carbon cycle, Global warming


Increased atmospheric CO2 concentrations lead to decreased pH and carbonate availability in the ocean (Ocean Acidification, OA). Carbon dioxide seeps serve as ‘windows into the future’ to study the ability of marine invertebrates to acclimatise to OA. We studied benthic foraminifera in sediments from shallow volcanic CO2 seeps in Papua New Guinea. Conditions follow a gradient from present day pH/pCO2 to those expected past 2100. We show that foraminiferal densities and diversity declined steeply with increasing pCO2. Foraminifera were almost absent at sites with pH < 7.9 (>700 μatm pCO2). Symbiont-bearing species did not exhibit reduced vulnerability to extinction at <7.9 pH. Non-calcifying taxa declined less steeply along pCO2 gradients, but were also absent in samples at pH < 7.9. Data suggest the possibility of an OA induced ecological extinction of shallow tropical benthic foraminifera by 2100; similar to extinctions observed in the geological past.

Concepts: Carbon dioxide, Carbon, PH, Bicarbonate, Carbonic acid, Volcano, Global warming, Foraminifera


BACKGROUND: The purpose was to investigate the effects of one dose of NaHCO3 per day for five consecutive days on cycling time-to-exhaustion (Tlim) at ‘Critical Power’ (CP) and acid–base parameters in endurance athletes. METHODS: Eight trained male cyclists and triathletes completed two exercise periods in a randomized, placebo-controlled, double-blind interventional crossover investigation. Before each period, CP was determined. Afterwards, participants completed five constant-load cycling trials at CP until volitional exhaustion on five consecutive days, either after a dose of NaHCO3 (0.3 body mass) or placebo (0.045 body mass NaCl). RESULTS: Average Tlim increased by 23.5% with NaHCO3 supplementation as compared to placebo (826.5 +/- 180.1 vs. 669.0 +/- 167.2 s; P = 0.001). However, there was no time effect for Tlim (P = 0.375). [HCO3-] showed a main effect for condition (NaHCO3: 32.5 +/- 2.2 mmol.l-1; placebo: 26.2 +/- 1.4 mmol.l-1; P < 0.001) but not for time (P = 0.835). NaHCO3 supplementation resulted in an expansion of plasma volume relative to placebo (P = 0.003). CONCLUSIONS: The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement.Trial registration: Identifier: NCT01621074.

Concepts: Clinical trial, Carbonate, Bicarbonate, Acidosis, Sodium bicarbonate, Hydrochloric acid, Sodium carbonate, Ammonium bicarbonate


Diatoms, the major contributors of the global biogenic silica cycle in modern oceans, account for about 40% of global marine primary productivity. They are an important component of the biological pump in the ocean, and their assemblage can be used as useful climate proxies; it is therefore critical to better understand the changes induced by environmental pH on their physiology, silicification capability and morphology. Here, we show that external pH influences cell growth of the ubiquitous diatom Thalassiosira weissflogii, and modifies intracellular silicic acid and biogenic silica contents per cell. Measurements at the single-cell level reveal that extracellular pH modifications lead to intracellular acidosis. To further understand how variations of the acid-base balance affect silicon metabolism and theca formation, we developed novel imaging techniques to measure the dynamics of valve formation. We demonstrate that the kinetics of valve morphogenesis, at least in the early stages, depends on pH. Analytical modeling results suggest that acidic conditions alter the dynamics of the expansion of the vesicles within which silica polymerization occurs, and probably its internal pH. Morphological analysis of valve patterns reveals that acidification also reduces the dimension of the nanometric pores present on the valves, and concurrently overall valve porosity. Variations in the valve silica network seem to be more correlated to the dynamics and the regulation of the morphogenesis process than the silicon incorporation rate. These multiparametric analyses from single-cell to cell-population levels demonstrate that several higher-level processes are sensitive to the acid-base balance in diatoms, and its regulation is a key factor for the control of pattern formation and silicon metabolism.

Concepts: Developmental biology, Cell wall, PH, Silicon, Acid-base homeostasis, Bicarbonate, Diatom, Silicic acid


Lactic acidosis is a frequent cause of poor outcome in the intensive care settings. We set up an experimental model of lactic acid infusion in normoxic and normotensive rats to investigate the systemic effects of lactic acidemia per se without the confounding factor of an underlying organic cause of acidosis.

Concepts: Acid, PH, Sepsis, Metabolic acidosis, Bicarbonate, Acidosis, Sodium bicarbonate, Lactic acidosis


High levels of ammonia (NH3) have been suggested to elevate ambient particle pH levels to near neutral acidity (pH = 7), a condition that promotes rapid SO2 oxidation by NO2 to form aerosol sulfate concentration consistent with “London fog” levels. This postulation is tested using aerosol data from representative sites around the world to conduct a thorough thermodynamic analysis of aerosol pH and its sensitivity to NH3 levels. We find that particle pH, regardless of ammonia levels, is always acidic even for the unusually high NH3 levels found in Beijing (pH = 4.5) and Xi'an (pH = 5), locations where sulfate production from NO x is proposed. Therefore, major sulfate oxidation through a NO2-mediated pathway is not likely in China, or any other region of the world (e.g., US, Mediterranean) where the aerosol is consistently more acidic. The limited alkalinity from the carbonate buffer in dust and seasalt can provide the only likely set of conditions where NO2-mediated oxidation of SO2 outcompetes with other well-established pathways. The mildly acidic levels associated with excessive amounts of ammonia can promote high rates of SO2 oxidation through transition metal chemistry, this may be an alternative important aerosol chemical contributor to the extreme pollution events.

Concepts: Carbon dioxide, Acid, Hydrogen, Nitrogen, PH, Salt, Bicarbonate, Base


The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

Concepts: Carbon dioxide, Fundamental physics concepts, Molecule, Chemistry, Atom, Quantum chemistry, Bicarbonate, Carbonic acid


BackgroundThe physiological effects of white-nose syndrome (WNS) in hibernating bats and ultimate causes of mortality from infection with Pseudogymnoascus (formerly Geomyces) destructans are not fully understood. Increased frequency of arousal from torpor described among hibernating bats with late-stage WNS is thought to accelerate depletion of fat reserves, but the physiological mechanisms that lead to these alterations in hibernation behavior have not been elucidated. We used the doubly labeled water (DLW) method and clinical chemistry to evaluate energy use, body composition changes, and blood chemistry perturbations in hibernating little brown bats (Myotis lucifugus) experimentally infected with P. destructans to better understand the physiological processes that underlie mortality from WNS.ResultsThese data indicated that fat energy utilization, as demonstrated by changes in body composition, was two-fold higher for bats with WNS compared to negative controls. These differences were apparent in early stages of infection when torpor-arousal patterns were equivalent between infected and non-infected animals, suggesting that P. destructans has complex physiological impacts on its host prior to onset of clinical signs indicative of late-stage infections. Additionally, bats with mild to moderate skin lesions associated with early-stage WNS demonstrated a chronic respiratory acidosis characterized by significantly elevated dissolved carbon dioxide, acidemia, and elevated bicarbonate. Potassium concentrations were also significantly higher among infected bats, but sodium, chloride, and other hydration parameters were equivalent to controls.ConclusionsIntegrating these novel findings on the physiological changes that occur in early-stage WNS with those previously documented in late-stage infections, we propose a multi-stage disease progression model that mechanistically describes the pathologic and physiologic effects underlying mortality of WNS in hibernating bats. This model identifies testable hypotheses for better understanding this disease, knowledge that will be critical for defining effective disease mitigation strategies aimed at reducing morbidity and mortality that results from WNS.

Concepts: Carbon dioxide, Physiology, Bat, Bicarbonate, Acidosis, Little brown bat, Hibernation, White nose syndrome


The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

Concepts: Oxygen, Carbon dioxide, Earth, Sun, Climate, Climate change, Bicarbonate, Base


Lactic acidosis is a very common biological issue for shock patients. Experimental data clearly demonstrate that metabolic acidosis, including lactic acidosis, participates in the reduction of cardiac contractility and in the vascular hyporesponsiveness to vasopressors through various mechanisms. However, the contributions of each mechanism responsible for these deleterious effects have not been fully determined and their respective consequences on organ failure are still poorly defined, particularly in humans. Despite some convincing experimental data, no clinical trial has established the level at which pH becomes deleterious for hemodynamics. Consequently, the essential treatment for lactic acidosis in shock patients is to correct the cause. It is unknown, however, whether symptomatic pH correction is beneficial in shock patients. The latest Surviving Sepsis Campaign guidelines recommend against the use of buffer therapy with pH ≥7.15 and issue no recommendation for pH levels <7.15. Furthermore, based on strong experimental and clinical evidence, sodium bicarbonate infusion alone is not recommended for restoring pH. Indeed, bicarbonate induces carbon dioxide generation and hypocalcemia, both cardiovascular depressant factors. This review addresses the principal hemodynamic consequences of shock-associated lactic acidosis. Despite the lack of formal evidence, this review also highlights the various adapted supportive therapy options that could be putatively added to causal treatment in attempting to reverse the hemodynamic consequences of shock-associated lactic acidosis.

Concepts: Carbon dioxide, Acid, PH, Sepsis, Bicarbonate, Acidosis, Alkalosis, Lactic acidosis