Discover the most talked about and latest scientific content & concepts.

Concept: Beta-2 adrenergic receptor


A highly crystallizable T4 lysozyme (T4L) was fused to the N-terminus of the β(2) adrenergic receptor (β(2)AR), a G-protein coupled receptor (GPCR) for catecholamines. We demonstrate that the N-terminal fused T4L is sufficiently rigid relative to the receptor to facilitate crystallogenesis without thermostabilizing mutations or the use of a stabilizing antibody, G protein, or protein fused to the 3rd intracellular loop. This approach adds to the protein engineering strategies that enable crystallographic studies of GPCRs alone or in complex with a signaling partner.

Concepts: Protein, Signal transduction, Cell membrane, G protein-coupled receptor, Metabotropic glutamate receptor, Guanine nucleotide exchange factor, G protein, Beta-2 adrenergic receptor


G-protein-coupled receptors (GPCRs) are critically regulated by β-arrestins, which not only desensitize G-protein signalling but also initiate a G-protein-independent wave of signalling. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G-protein complex, has provided novel insights into the structural basis of receptor activation. However, complementary information has been lacking on the recruitment of β-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor-β-arrestin complexes for structural studies. Here we devised a strategy for forming and purifying a functional human β2AR-β-arrestin-1 complex that allowed us to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between β2AR and β-arrestin 1 using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and chemical crosslinking. Electron microscopy two-dimensional averages and three-dimensional reconstructions reveal bimodal binding of β-arrestin 1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of crosslinked residues suggest engagement of the finger loop of β-arrestin 1 with the seven-transmembrane core of the receptor. In contrast, focal areas of raised HDX levels indicate regions of increased dynamics in both the N and C domains of β-arrestin 1 when coupled to the β2AR. A molecular model of the β2AR-β-arrestin signalling complex was made by docking activated β-arrestin 1 and β2AR crystal structures into the electron microscopy map densities with constraints provided by HDX-MS and crosslinking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented here provides a framework for better understanding the basis of GPCR regulation by arrestins.

Concepts: Signal transduction, G protein-coupled receptor, Metabotropic glutamate receptor, Arrestin, Cross-link, G protein, G protein-coupled receptors, Beta-2 adrenergic receptor


Aberrant DNA methylation has been observed in the patients with Alzheimer’s disease (AD), a common neurodegenerative disorder in the elderly. OPRD1 encodes the delta opioid receptor, a member of the opioid family of G-protein-coupled receptors. In the current study, we compare the DNA methylation levels of OPRD1 promoter CpG sites (CpG1, CpG2, and CpG3) between 51 AD cases and 63 controls using the bisulfite pyrosequencing technology. Our results show that significantly higher CpG3 methylation is found in AD cases than controls. Significant associations are found between several biochemical parameters (including HDL-C and ALP) and CpG3 methylation. Subsequent luciferase reporter gene assay shows that DNA fragment containing the three OPRD1 promoter CpGs is able to regulate gene expression. In summary, our results suggest that OPRD1 promoter hypermethylation is associated with the risk of AD.

Concepts: DNA, Gene, Genetics, Gene expression, Molecular biology, DNA methylation, Opioid receptor, Beta-2 adrenergic receptor


Asthma, accompanied by lung inflammation, bronchoconstriction and airway hyper-responsiveness, is a significant public health burden. Here we report that Mas-related G protein-coupled receptors (Mrgprs) are expressed in a subset of vagal sensory neurons innervating the airway and mediates cholinergic bronchoconstriction and airway hyper-responsiveness. These findings provide insights into the neural mechanisms underlying the pathogenesis of asthma.

Concepts: Immune system, Nervous system, Signal transduction, Asthma, Neurotransmitter, G protein-coupled receptor, Metabotropic glutamate receptor, Beta-2 adrenergic receptor


Intracellular trafficking of G protein-coupled receptors (GPCRs) controls their localization and degradation, which affects a cell’s ability to adapt to extracellular stimuli. Although the perturbation of trafficking induces important diseases, these trafficking mechanisms are poorly understood. Herein, we demonstrate an optogenetic method using an optical dimerizer, cryptochrome (CRY) and its partner protein (CIB), to analyze the trafficking mechanisms of GPCRs and their regulatory proteins. Temporally controlling the interaction between β-arrestin and β2-adrenergic receptor (ADRB2) reveals that the duration of the β-arrestin-ADRB2 interaction determines the trafficking pathway of ADRB2. Remarkably, the phosphorylation of ADRB2 by G protein-coupled receptor kinases is unnecessary to trigger clathrin-mediated endocytosis, and β-arrestin interacting with unphosphorylated ADRB2 fails to activate mitogen-activated protein kinase (MAPK) signaling, in contrast to the ADRB2 agonist isoproterenol. Temporal control of β-arrestin-GPCR interactions will enable the investigation of the unique roles of β-arrestin and the mechanism by which it regulates β-arrestin-specific trafficking pathways of different GPCRs.

Concepts: Protein, Signal transduction, Adenosine triphosphate, Cell membrane, G protein-coupled receptor, Metabotropic glutamate receptor, Protein kinase A, Beta-2 adrenergic receptor


G protein-coupled receptors exist in multiple conformations that can engage distinct signaling mechanisms which in turn may lead to diverse behavioral outputs. In rodent models, activation of the delta opioid receptor (δ-receptor) has been shown to elicit antihyperalgesia, antidepressant-like effects, and convulsions. We recently showed that these δ-receptor-mediated behaviors are differentially regulated by the GTPase-activating protein regulator of G protein signaling 4 (RGS4), which facilitates termination of G protein signaling. To further evaluate the signaling mechanisms underlying δ-receptor-mediated antihyperalgesia, antidepressant-like effects, and convulsions, we observed how changes in Gαo or arrestin proteins in vivo affected behaviors elicited by the δ-receptor agonist SNC80 in mice.

Concepts: Protein, Signal transduction, Cell membrane, Receptor, Opioid receptor, G protein-coupled receptor, G protein, Beta-2 adrenergic receptor


We evaluated whether maintenance tocolysis (intravenous ritodrine hydrochloride and/or magnesium sulfate) was effective in cases of spontaneous preterm labor with intact membranes.

Concepts: Magnesium, Magnesium sulfate, Sulfur, Preterm birth, Beta-2 adrenergic receptor, Tocolytic, Ritodrine, Tocolytics


Genetic polymorphisms in G-protein beta-3 subunit (GNβ3) and beta-2 adrenergic receptor (ADRB2) are associated with pain and gut hypersensitivity, which can overlap with gastroesophageal reflux disease (GERD).

Concepts: Cohort study, Epidemiology, Asthma, Cough, G protein-coupled receptor, Gastroesophageal reflux disease, Adrenergic receptor, Beta-2 adrenergic receptor


The beta-adrenergic receptors coded by the ADRB1, ADRB2 and ADRB3 genes play important roles in mediating metabolic effects, especially lipolysis, insulin resistance and energy balance. This study investigated the expression levels of these three genes in different tissues of Qinchuan cattle by real-time polymerase chain reaction (RT-PCR). Expressed levels of RNA from the ADRB2 gene were generally much higher than for ADRB1 and ADRB3. ADRB1 and ADRB2 expression levels were highest in subcutaneous fat and lower in muscle, whereas ADRB3 expression was higher in muscle tissue. Eight single nucleotide polymorphisms (SNPs) were discovered in 503 Qinchuan cattle by DNA sequencing, containing three missense mutations (g.1148G>C in ADRB1, g.1293C>T and g.1311T>C in ADRB2), four synonymous mutations (g.1054T>C, g.1122C>T and g.1143G>T in ADRB1 and g.506A>G in ADRB3), as well as one mutation in 3'untranslated region (3'UTR) (g.2799G>A in ADRB3). Interestingly, five of them were located in regions predicted to contain multiple repeats of CG nucleotides (CpG islands). Association analysis showed relationships between most of those SNPs or combined haplotypes and carcass traits of Qinchuan cattle. This study association analysis suggests that polymorphisms in these genes might be useful for selection in beef cattle breeding.

Concepts: DNA, Gene, Gene expression, Polymerase chain reaction, Molecular biology, RNA, Adrenergic receptor, Beta-2 adrenergic receptor


The GRK/β-arrestin and PKC/PKA mediate the homologous and heterologous regulation of G protein-coupled receptors (GPCRs), respectively. Interaction between the two pathways is one of the most important issues in understanding the regulation of GPCRs. The present study investigated the regulatory effect of GRK2 and β-arrestins on PKC activation. The roles of GRK2 and β-arrestins in the functional regulation of PKC were assessed by determining their influence on PKC autophosphorylation and intracellular translocation. Radioligand binding assay was utilized to characterize intracellular trafficking of dopamine D2R, D3R, and β2 adrenergic receptor (β2AR). The subdomains involved in the mutual interactions among GRK2, β-arrestin2, and PKCβII were determined by in vitro binding assay. Various point mutants of key regulatory players were combined with knockdown cells of GRK2, β-arrestins, and Mdm2 to functionally correlate the biochemical changes with functional outcomes. GRK2 and β-arrestin2 mutually inhibited the PKCβII autophosphorylation, a hallmark of PKCβII activation. β-Arrestin2 ubiquitination was required for the inhibitory activities of GRK2 as well as β-arrestin2. Furthermore, GRK2 facilitated β-arrestin2 ubiquitination, thus to enhance the inhibitory actions of β-arrestin2 on PKCβII activity. Aforementioned processes were also involved in the GRK2/β-arrestin2-mediated inhibition of the D2R, D3R, and β2AR endocytosis. The present study provides new insights into the intricate interactions between the homologous and heterologous GPCR regulation pathways. In addition, a novel regulatory role of GRK2 was proposed for the ubiquitination of β-arrestin in the context of the PKC-mediated heterologous regulation of GPCRs.

Concepts: Signal transduction, Cell membrane, Receptor, G protein-coupled receptor, Metabotropic glutamate receptor, G protein, G protein-coupled receptors, Beta-2 adrenergic receptor