Discover the most talked about and latest scientific content & concepts.

Concept: Beef


Hybridization between endangered species and more common species is a significant problem in conservation biology because it may result in extinction or loss of adaptation. The historical reduction in abundance and geographic distribution of the American plains bison (Bison bison bison) and their recovery over the last 125 years is well documented. However, introgression from domestic cattle (Bos taurus) into the few remaining bison populations that existed in the late 1800s has now been identified in many modern bison herds. We examined the phenotypic effect of this ancestry by comparing weight and height of bison with cattle or bison mitochondrial DNA (mtDNA) from Santa Catalina Island, California (U.S.A.), a nutritionally stressful environment for bison, and of a group of age-matched feedlot bison males in Montana, a nutritionally rich environment. The environmental and nutritional differences between these 2 bison populations were very different and demonstrated the phenotypic effect of domestic cattle mtDNA in bison over a broad range of conditions. For example, the average weight of feedlot males that were 2 years of age was 2.54 times greater than that of males from Santa Catalina Island. In both environments, bison with cattle mtDNA had lower weight compared with bison with bison mtDNA, and on Santa Catalina Island, the height of bison with cattle mtDNA was lower than the height of bison with bison mtDNA. These data support the hypothesis that body size is smaller and height is lower in bison with domestic cattle mtDNA and that genomic integrity is important for the conservation of the American plains bison. Efectos Fenotípicos del ADN Mitocondrial de Ganado en el Bisonte Americano.

Concepts: Beef, Cattle, Bos, Gaur, Bovinae, Extinction, American Bison, Bison


The objective of this work was to evaluate the use of a direct analysis technique (SIFT-MS) to measure the lipid oxidation process in beef meat packed under high oxygen atmosphere and compare it to conventional techniques such as gas chromatography-mass spectrometry analysis and TBARS values. Meat samples from two suppliers were selected and packaged under the same atmosphere conditions. The fatty acid content, the physicochemical (TBARS and volatile compounds) and sensory parameters were measured. The samples from supplier 2 had a highest content of PUFA and n6 fatty acids that was related with a highest oxidation during storage. SIFT-MS and SPME-GC-MS detected a significant increase for most of the volatiles compounds analyzed during storage especially, in aldehyde compounds. High correlation coefficients between TBARS values and linear aldehydes (C3-C7) measured by both techniques were obtained and this indicates that SIFT-MS can be used to monitor lipid oxidation changes.

Concepts: Volatile, Beef, Hydrogen, Volatile organic compound, Carbon dioxide, Ketone, Alcohol, Hydrogenation


A four-year study was conducted utilizing 736 steers of known Angus, Simmental, or Simmental x Angus genetics to determine performance, carcass, and feed efficiency factors that explained variation in economic performance. Steers were pen-fed and individual DMI was recorded using a GrowSafe automated feeding system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada). Steers consumed a similar diet and received similar management each year. The objectives of this study were to 1) determine current economic value of feed efficiency and 2) identify performance, carcass, and feed efficiency characteristics that predict: carcass value, profit, cost of gain, and feed costs. Economic data utilized were from 2011 values. Feed efficiency values investigated were: feed conversion ratio (FCR; F:G), residual feed intake (RFI), residual BW gain (RG), and residual intake and BW gain (RIG). Dependent variables were carcass value ($/steer), profit ($/steer), feed costs ($/steer*d(-1)), and cost of gain ($/kg). Independent variables were year, DMI, ADG, HCW, LM area, marbling, yield grade, dam breed, and sire breed. A 10% improvement in RG (P < 0.05), yielded the lowest cost of gain at -$0.09/kg and highest carcass value ($17.92/steer). Carcass value increased (P < 0.05) as feed efficiency improved for FCR, RG, and RIG. Profit increased with a 10% improvement in feed efficiency (P < 0.05) with FCR at $34.65/steer, RG at $31.21/steer, RIG at $21.66/steer, and RFI at $11.47/steer. The carcass value prediction model explained 96% of the variation among carcasses and included HCW, marbling score, and yield grade. Average daily gain, marbling score, yield grade, DMI, HCW, and year born constituted 81% of the variation for prediction of profit. Eighty-five percent of the variation in cost of gain was explained by ADG, DMI, HCW, and year. Prediction equations were developed that excluded ADG and DMI and included feed efficiency values. Using these equations, cost of gain was explained primarily by FCR (R(2) = 0.71). Seventy-three percent of profitability was explained with 55% being accounted for by RG and marbling. These prediction equations represent the relative importance of factors contributing to economic success in feedlot cattle based on current prices.

Concepts: Beef, Scientific method, Price, Feed conversion ratio, Value, Economics, Regression analysis


The present investigation focuses on the textural properties, sensory attributes and color changes of beef frankfurter, beef ham and meat-free sausage produced by different levels of bleached tomato pomace. The texture and color profile were performed using an instrumental texture analyzer and colorimeter. The findings indicated that tomato pomace-added sausages had higher water holding capacity (WHC) compared to that of commercial samples. The frankfurters containing 5 and 7% (w/w) tomato pomace had the highest redness (a*), chroma (C*) and color differences (ΔE) values, while the meat-free sausages containing 7% (w/w) tomato pomace had significant (p<0.05) values for lightness (L*) and yellowness (b*). Furthermore, there were no significant (p>0.05) color differences between beef ham samples (with and without tomato pomace). A significant progression in the textural hardness and chewiness of systems containing tomato pomace was observed as well as higher sensory scores by panelists. According to sensorial evaluations, bleached tomato pomace improved the consumer acceptability and preference.

Concepts: Charcuterie, Bologna sausage, Meat, Red, Beef, Pork, Hot dog, Sausage


Abstract Ready-to-eat (RTE) muscle foods refer to a general category of meat and poultry products that are fully cooked and consumable without reheating. These products, including whole and sliced pork, beef, turkey, chicken, and variety meats, in the forms of ham, roast, rolls, sausage, and frankfurter, are widely available in the delicatessen section of retail stores or various food service outlets. However, difficulties in avoidance of contamination by foodborne pathogens, notably Listeria monocytogenes, during product post-lethality repackaging render RTE meats labile to outbreaks. Accordingly, the USDA-FSIS has established processing guidelines and regulations, which are constantly updated, to minimize foodborne pathogens in RTE products. Technologies that complement good manufacturing practice have been developed to control RTE meat safety. Among them, various antimicrobial product formulations, post-packaging pasteurization (thermal and nonthermal), and antimicrobial packaging, are being used. Through these efforts, outbreaks linked to RTE meat consumption have substantially reduced in recent years. However, the pervasive and virulent nature of L. monocytogenes and the possible presence of other cold-tolerant pathogens entail continuing developments of new intervention technologies. This review updates existing and emerging physical and chemical methods and their mode of action to inactivate or inhibit threatening microorganisms in RTE muscle foods.

Concepts: Food safety, Nutrition, Beef, Listeria monocytogenes, Sausage, Microbiology, Pork, Meat


Genomically estimated breeding values (GEBV) for Angus beef cattle are available from at least 2 commercial suppliers (Igenity [] and Zoetis []). The utility of these GEBV for improving genetic evaluation depends on their accuracies, which can be estimated by the genetic correlation with phenotypic target traits. Genomically estimated breeding values of 1,032 Angus bulls calculated from prediction equations (PE) derived by 2 different procedures in the U.S. Angus population were supplied by Igenity. Both procedures were based on Illuminia BovineSNP50 BeadChip genotypes. In procedure sg, GEBV were calculated from PE that used subsets of only 392 SNP, where these subsets were individually selected for each trait by BayesCπ. In procedure rg GEBV were calculated from PE derived in a ridge regression approach using all available SNP. Because the total set of 1,032 bulls with GEBV contained 732 individuals used in the Igenity training population, GEBV subsets were formed characterized by a decreasing average relationship between individuals in the subsets and individuals in the training population. Accuracies of GEBV were estimated as genetic correlations between GEBV and their phenotypic target traits modeling GEBV as trait observations in a bivariate REML approach, in which phenotypic observations were those recorded in the commercial Australian Angus seed stock sector. Using results from the GEBV subset excluding all training individuals as a reference, estimated accuracies were generally in agreement with those already published, with both types of GEBV (sg and rg) yielding similar results. Accuracies for growth traits ranged from 0.29 to 0.45, for reproductive traits from 0.11 to 0.53, and for carcass traits from 0.3 to 0.75. Accuracies generally decreased with an increasing genetic distance between the training and the validation population. However, for some carcass traits characterized by a low number of phenotypic records (weight, intramuscular fat, and eye muscle area), accuracies were observed to increase but had large SE. Therefore, Igenity GEBV can be useful to Australian Angus breeders, either for blending EBV or as the sole basis for selection decisions if no other information is available. However, for carcass traits, additional phenotypic data are required.

Concepts: Cattle, Evolution, Mathematics, Gene, Genotype, Genetics, Beef, Angus cattle


Antimicrobial resistant determinants (ARDs) can be transmitted from livestock systems through meat products or environmental effluents. The public health risk posed by these two routes is not well understood, particularly in non-pathogenic bacteria. We collected pooled samples from 8 groups of 1741 commercial cattle as they moved through the process of beef production from feedlot entry through slaughter. We recorded antimicrobial drug exposures and interrogated the resistome at points in production when management procedures could potentially influence ARD abundance and/or transmission. Over 300 unique ARDs were identified. Resistome diversity decreased while cattle were in the feedlot, indicating selective pressure. ARDs were not identified in beef products, suggesting that slaughter interventions may reduce the risk of transmission of ARDs to beef consumers. This report highlights the utility and limitations of metagenomics for assessing public health risks regarding antimicrobial resistance, and demonstrates that environmental pathways may represent a greater risk than the food supply.

Concepts: Environmental science, Feedlot, Environment, Beef, Natural environment, Antibiotic resistance, Meat, Livestock


Consuming alcohol prior to a meal (an apéritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol.

Concepts: Brain tumor, Nuclear magnetic resonance, Meat, Nutrition, Brain, Beef, Food, Magnetic resonance imaging


Many people enjoy eating meat but dislike causing pain to animals. Dissociating meat from its animal origins may be a powerful way to avoid cognitive dissonance resulting from this ‘meat paradox’. Here, we provide the first comprehensive test of this hypothesis, highlighting underlying psychological mechanisms. Processed meat made participants less empathetic towards the slaughtered animal than unprocessed meat (Study 1). When beheaded, a whole roasted pork evoked less empathy (Study 2a) and disgust (Study 2b) than when the head was present. These affective responses, in turn, made participants more willing to eat the roast and less willing to consider an alternative vegetarian dish. Conversely, presenting a living animal in a meat advertisement increased empathy and reduced willingness to eat meat (Study 3). Next, describing industrial meat production as “harvesting” versus “killing” or “slaughtering” indirectly reduced empathy (Study 4). Last, replacing “meat/pork” with “cow/pig” in a restaurant menu increased empathy and disgust, which both equally reduced willingness to eat meat and increased willingness to choose an alternative vegetarian dish (Study 5). In all experiments, effects were strongly mediated by dissociation and interacted with participants' general dissociation tendencies in Study 3 and 5, so that effects were particularly pronounced among participants who generally spend efforts disassociating meat from animals in their daily lives. Together, this line of research demonstrates the large role various culturally-entrenched processes of dissociation play for meat consumption.

Concepts: In vitro meat, Nutrition, Vegetarianism, Beef, Roasting, Pork, Ethics of eating meat, Meat


The impact of proximity to a beef cattle feedlot on E. coli O157:H7 contamination of leafy greens was examined. In each of two years, leafy greens were planted to nine plots located 60, 120, and 180 meters from a cattle feedlot (3 plots each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 meters, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 meters, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry, and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 meters (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination.

Concepts: Foodborne illness, Feedlot, Shiga toxin, Bacteria, Escherichia coli O157:H7, Beef, Livestock, Escherichia coli