SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Beach

273

Just a bit of water enables one to turn a pile of dry sand into a spectacular sandcastle. Too much water however will destabilize the material, as is seen in landslides. Here we investigated the stability of wet sand columns to account for the maximum height of sandcastles. We find that the columns become unstable to elastic buckling under their own weight. This allows to account for the maximum height of the sand column; it is found to increase as the 2/3 power of the base radius of the column. Measuring the elastic modulus of the wet sand, we find that the optimum strength is achieved at a very low liquid volume fraction of about 1%. Knowing the modulus we can quantitatively account for the measured sandcastle heights.

Concepts: Volume, Liquid, Length, Earthquake engineering, Beach, Sand, Column, Buckling

113

Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005-2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be possible due to logistical and financial constraints of running government-funded sampling programmes on such large scales.

Concepts: Time, Statistics, Data, Coast, Beach, Waste, Output, English Channel

28

It is predicted that the coastal zone will be among the environments worst affected by projected climate change. Projected losses in beach area will negatively impact on coastal infrastructure and continued recreational use of beaches. Beach nourishment practices such as artificial nourishment, replenishment and scraping are increasingly used to combat beach erosion but the extent and scale of projects is poorly documented in large areas of the world. Through a survey of beach managers of Local Government Areas and a comprehensive search of peer reviewed and grey literature, we assessed the extent of nourishment practices in Australia. The study identified 130 beaches in Australia that were subject to nourishment practices between 2001 and 2011. Compared to projects elsewhere, most Australian projects were small in scale but frequent. Exceptions were nine bypass projects which utilised large volumes of sediment. Most artificial nourishment, replenishment and beach scraping occurred in highly urbanised areas and were most frequently initiated in spring during periods favourable to accretion and outside of the summer season of peak beach use. Projects were generally a response to extreme weather events, and utilised sand from the same coastal compartment as the site of erosion. Management was planned on a regional scale by Local Government Authorities, with little monitoring of efficacy or biological impact. As rising sea levels and growing coastal populations continue to put pressure on beaches a more integrated approach to management is required, that documents the extent of projects in a central repository, and mandates physical and biological monitoring to help ensure the engineering is sustainable and effective at meeting goals.

Concepts: Sediment, Weather, Coast, Beach, Sand, Coastal geography, Extreme weather, Beach nourishment

28

European foredunes are almost exclusively colonised by Ammophila arenaria, and both the natural succession and the die-out of this plant have been linked to populations of plant-parasitic nematodes (PPN). The overarching aim of this study was to investigate top-down control processes of PPN in these natural ecosystems through comparative analyses of the diversity and dynamics of PPN and their microbial enemies. Our specific aims were, first, to identify and quantify PPN microbial enemies in European sand dunes; second, to assess their life history traits, their spatial and temporal variation in these ecosystems, and third, to evaluate their control potential of PPN populations. This was done by seasonal sampling of a range of sites and making observations on both the nematode and the microbial enemy communities in rhizosphere sand. Nine different nematode microbial enemies belonging to different functional groups were detected in European sand dunes. Their high diversity in these low productivity ecosystems could both result from or lead to the lack of dominance of a particular nematode genus. The distribution of microbial enemies was spatially and temporally variable, both among and within sampling sites. Obligate parasites, either with low host-specificity or having the ability to form an environmentally resistant propagule, are favoured in these ecosystems and are more frequent and abundant than facultative parasites. Three microbial enemies correlated, either positively or negatively, with PPN population size: Catenaria spp., Hirsutella rhossiliensis and Pasteuria penetrans. Microbial-enemy supported links in the food-web may be involved in the control of PPN populations through indirect effects. The endospore-forming P. penetrans was the most successful top-down control agent, and was implicated in the direct control of Meloidogyne spp. and indirect facilitation of Pratylenchus spp. Overall, our findings suggest strong and diverse top-down control effects on the nematode community in these natural ecosystems.

Concepts: Parasites, Nematode, Ecosystem, Beach, Sand, Ecological succession, Dune, Ammophila

28

Distribution and levels of C. botulinum type E was determined on field sites used by Inuit hunters for butchering seals along the coast of Nunavik. The incidence of C. botulinum type E in shoreline soil along the coast was 0, 50, and 87.5% of samples tested for the Hudson Strait, Hudson Bay, and Ungava Bay regions, respectively. Spores were detected in seawater or coastal rock surfaces from 17.6% of butchering sites, almost all located in southern Ungava Bay. Concentrations of C. botulinum type E along the Ungava Bay coast were significantly higher than the coasts of Hudson Strait and Hudson Bay, with the highest concentrations (270 to 1,800/kg) found near butchering sites located along the mouths of large rivers. The Koksoak River contained high levels of C. botulinum type E, with the highest median concentration (270/kg) found in sediments of the marine portion of the river. C. botulinum type E was found in the intestinal contents (4.4%) and skins (1.4%) of seals. A high genetic biodiversity of C. botulinum type E isolates was observed among the 21 butchering sites and their surroundings along the Nunavik coastline, with 83% of isolates (44/53) yielding distinct PFGE genotypes. Multiple sources of C. botulinum type E may be involved in the contamination of seal meat during butchering, but the risk of contamination appears to be much higher from environmental sources along the shoreline of southern Ungava Bay and the sediments of the Koksoak River.

Concepts: Coast, Inuit, Beach, Quebec, Clostridium botulinum, Nunavut, Nunavik, Hudson Bay

27

In coastal environments, evaporation is an important driver of subsurface salinity gradients in marsh systems. However, it has not been addressed in the intertidal zone of sandy beaches. Here, we used field data on an estuarine beach foreshore with numerical simulations to show that evaporation causes upper intertidal zone pore-water salinity to be double that of seawater. We found the increase in pore-water salinity mainly depends on air temperature and relative humidity, and tide and wave actions dilute a fraction of the high salinity plume, resulting in a complex process. This is in contrast to previous studies that consider seawater as the most saline source to a coastal aquifer system, thereby concluding that seawater infiltration always increases pore-water salinity by seawater-groundwater mixing dynamics. Our results demonstrate the combined effects of evaporation and tide and waves on subsurface salinity distribution on a beach face. We anticipate our quantitative investigation will shed light on the studies of salt-affected biological activities in the intertidal zone. It also impacts our understanding of the impact of global warming; in particular, the increase in temperature does not only shift the saltwater landward, but creates a different salinity distribution that would have implications on intertidal biological zonation.

Concepts: Water, Coast, Beach, Intertidal zone, Coastal geography, Tide, Shore, Tide pool

16

After the explosion of the Deepwater Horizon oil rig, large volumes of crude oil were washed onto and embedded in the sandy beaches and sublittoral sands of the Northern Gulf of Mexico. Some of this oil was mechanically or chemically dispersed before reaching the shore. With a set of laboratory-column experiments we show that the addition of chemical dispersants (Corexit 9500A) increases the mobility of polycyclic aromatic hydrocarbons (PAHs) in saturated permeable sediments by up to two orders of magnitude. Distribution and concentrations of PAHs, measured in the solid phase and effluent water of the columns using GC/MS, revealed that the mobility of the PAHs depended on their hydrophobicity and was species specific also in the presence of dispersant. Deepest penetration was observed for acenaphthylene and phenanthrene. Flushing of the columns with seawater after percolation of the oiled water resulted in enhanced movement by remobilization of retained PAHs. An in-situ benthic chamber experiment demonstrated that aromatic hydrocarbons are transported into permeable sublittoral sediment, emphasizing the relevance of our laboratory column experiments in natural settings. We conclude that the addition of dispersants permits crude oil components to penetrate faster and deeper into permeable saturated sands, where anaerobic conditions may slow degradation of these compounds, thus extending the persistence of potentially harmful PAHs in the marine environment. Application of dispersants in nearshore oil spills should take into account enhanced penetration depths into saturated sands as this may entail potential threats to the groundwater.

Concepts: Water, Petroleum, Chemistry, Polycyclic aromatic hydrocarbon, Hydrocarbon, Exxon Valdez oil spill, Naphthalene, Beach

15

We build on previous work to construct a comprehensive database of shoreline oiling exposure from the Deepwater Horizon (DWH) spill by compiling field and remotely-sensed datasets to support oil exposure and injury quantification. We compiled a spatial database of shoreline segments with attributes summarizing habitat, oiling category and timeline. We present new simplified oil exposure classes for both beaches and coastal wetland habitats derived from this database integrating both intensity and persistence of oiling on the shoreline over time. We document oiling along 2113km out of 9545km of surveyed shoreline, an increase of 19% from previously published estimates and representing the largest marine oil spill in history by length of shoreline oiled. These data may be used to generate maps and calculate summary statistics to assist in quantifying and understanding the scope, extent, and spatial distribution of shoreline oil exposure as a result of the DWH incident.

Concepts: Time, Mathematics, Petroleum, Marsh, Wetland, Coast, Beach, Oil

15

Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities.

Concepts: United States, Coast, Climate change, Population density, Macroeconomics, Beach, Coastal geography, Shore

11

Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO2 source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg(-1) at 2 Ag(-1) after 1000 cycles.

Concepts: Carbon dioxide, Electrochemistry, Battery, Electrolyte, Electrode, Electrolysis, Beach, Sand