Discover the most talked about and latest scientific content & concepts.

Concept: Barcode


This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel’s global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point’s plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

Concepts: Frame of reference, Coordinate systems, Barcode, Polar coordinate system, Geometry, Geographic coordinate system, Analytic geometry, Coordinate system


We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

Concepts: Bioinformatics, Barcode, Taxonomy, Biology, Identification, Plant, DNA barcoding, Species


This paper shows that stacked sheets of paper preincubated with different biological reagents and skiving them into uniform test paper sheets allow mass manufacturing of multiplexed immunoassay devices and simultaneous detection of multiplex targets that can be read out by a barcode scanner. The thickness of one sheet of paper can form the width of a module for the barcode; when stacked, these sheets of paper can form a series of barcodes representing the targets, depending on the color contrast provided by a colored precipitate of an immunoassay. The uniform thickness of sheets of paper allows high-quality signal readout. The manufacturing method allows highly efficient fabrication of the materials and substrates for a straightforward assay of targets that range from drugs of abuse to biomarkers of blood-transmitted infections. In addition, as a novel alternative to the conventional point-of-care testing method, the paper-based barcode assay system can provide highly efficient, accurate, and objective diagnoses.

Concepts: Multiplexing, Code 39, Automatic identification and data capture, ELISA, Assay, Barcodes, Barcode reader, Barcode


The United Nations Population Fund (UNFPA) and the United States Agency for International Development (USAID) DELIVER PROJECT work together to strengthen public health commodity supply chains by standardizing bar coding under a single set of global standards. From 2015, UNFPA and USAID collaborated to pilot test how tracking and tracing of bar coded health products could be operationalized in the public health supply chains of Ethiopia and Pakistan and inform the ecosystem needed to begin full implementation. Pakistan had been using proprietary bar codes for inventory management of contraceptive supplies but transitioned to global standards-based bar codes during the pilot. The transition allowed Pakistan to leverage the original bar codes that were preprinted by global manufacturers as opposed to printing new bar codes at the central warehouse. However, barriers at lower service delivery levels prevented full realization of end-to-end data visibility. Key barriers at the district level were the lack of a digital inventory management system and absence of bar codes at the primary-level packaging level, such as single blister packs. The team in Ethiopia developed an open-sourced smartphone application that allowed the team to scan bar codes using the mobile phone’s camera and to push the captured data to the country’s data mart. Real-time tracking and tracing occurred from the central warehouse to the Addis Ababa distribution hub and to 2 health centers. These pilots demonstrated that standardized product identification and bar codes can significantly improve accuracy over manual stock counts while significantly streamlining the stock-taking process, resulting in efficiencies. The pilots also showed that bar coding technology by itself is not sufficient to ensure data visibility. Rather, by using global standards for identification and data capture of pharmaceuticals and medical devices, and integrating the data captured into national and global tracking systems, countries are able to lay the foundation for interoperability and ensure a harmonized language between global health stakeholders.

Concepts: Code, Encodings, Supply chain management, Standardization, Health care, Automatic identification and data capture, Inventory, Barcode


Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products.

Concepts: Barcode, Molecular biology, Seafood, Identification, Species, DNA, DNA sequencing, DNA barcoding


The biodiversity of Mediterranean freshwater bodies is among the most threatened worldwide; therefore, its accurate estimation is an urgent issue. However, traditional methods are likely to underestimate freshwater zooplankton biodiversity due to its high species seasonality and cryptic diversity. We test the value of applying DNA barcoding to diapausing egg banks, in combination with the creation of a reference collection of DNA barcodes using adult individual samples, to characterize rotifer communities. We use monogonont rotifers from two lakes in Doñana National Park and one from Ruidera Natural Park in Spain as models to create a reference collection of DNA barcodes for taxonomically diagnosed adult individuals sampled from the water column, to compare with the sequences obtained from individual eggs from the diapausing egg banks. We apply two different approaches to carry out DNA taxonomy analyses, the generalized mixed Yule coalescent method (GMYC) and the Automatic Barcode Gap Discovery (ABGD), to the obtained sequences and to publicly available rotifer sequences. We obtained a total of 210 new rotifer COI sequences from all three locations (151 diapausing eggs and 59 adults). Both GMYC and ABGD generated the same 35 operational taxonomic units (OTUs), revealing four potential cryptic species. Most sequences obtained from diapausing eggs (85%) clustered with sequences obtained from morphologically diagnosed adults. Our approach, based on a single sediment sample, retrieved estimates of rotifer biodiversity higher than or similar to those of previous studies based on a number of seasonal samples. This study shows that DNA barcoding of diapausing egg banks is an effective aid to characterize rotifer diversity in Mediterranean freshwater bodies.

Concepts: Identification, Sample, Barcode, Rotifer, DNA barcoding, Species, Taxonomy


Currently, freshwater zooplankton sampling and identification methodologies have remained virtually unchanged since they were first established in the beginning of the XX century. One major contributing factor to this slow progress is the limited success of modern genetic methodologies, such as DNA barcoding, in several of the main groups. This study demonstrates improved protocols which enable the rapid assessment of most animal taxa inhabiting any freshwater system by combining the use of light traps, careful fixation at low temperatures using ethanol, and zooplankton-specific primers. We DNA-barcoded 2,136 specimens from a diverse array of taxonomic assemblages (rotifers, mollusks, mites, crustaceans, insects, and fishes) from several Canadian and Mexican lakes with an average sequence success rate of 85.3%. In total, 325 Barcode Index Numbers (BINs) were detected with only three BINs (two cladocerans and one copepod) shared between Canada and Mexico, suggesting a much narrower distribution range of freshwater zooplankton than previously thought. This study is the first to broadly explore the metazoan biodiversity of freshwater systems with DNA barcodes to construct a reference library that represents the first step for future programs which aim to monitor ecosystem health, track invasive species, or improve knowledge of the ecology and distribution of freshwater zooplankton.

Concepts: Zooplankton, Crustacean, Barcode, Taxonomy, Species, Identification, Ecology, DNA barcoding


DNA barcoding relies on short and standardized gene regions to identify species. The agricultural and horticultural applications of barcoding such as for marketplace regulation and copyright protection remain poorly explored. This study examines the effectiveness of the standard plant barcode markers (matK and rbcL) for the identification of plant species in private and public nurseries in northern Egypt. These two markers were sequenced from 225 specimens of 161 species and 62 plant families of horticultural importance. The sequence recovery was similar for rbcL (96.4%) and matK (84%), but the number of specimens assigned correctly to the respective genera and species was lower for rbcL (75% and 29%) than matK (85% and 40%). The combination of rbcL and matK brought the number of correct generic and species assignments to 83.4% and 40%, respectively. Individually, the efficiency of both markers varied among different plant families; for example, all palm specimens (Arecaceae) were correctly assigned to species while only one individual of Asteraceae was correctly assigned to species. Further, barcodes reliably assigned ornamental horticultural and medicinal plants correctly to genus while they showed a lower or no success in assigning these plants to species and cultivars. For future, we recommend the combination of a complementary barcode (e.g. ITS or trnH-psbA) with rbcL + matK to increase the performance of taxa identification. By aiding species identification of horticultural crops and ornamental palms, the analysis of the barcode regions will have large impact on horticultural industry.

Concepts: Barcode, Tree, DNA barcoding, Organism, Botany, Biology, Horticulture, Species


In a rapidly changing world we need methods to efficiently assess biodiversity in order to monitor ecosystem trends. Ecological monitoring often uses plant community composition to infer quality of sites but conventional aboveground surveys only capture a snapshot of the actively growing plant diversity. Environmental DNA (eDNA) extracted from soil samples, however, can include taxa represented by both active and dormant tissues, seeds, pollen, and detritus. Analysis of this eDNA through DNA metabarcoding provides a more comprehensive view of plant diversity at a site from a single assessment but it is not clear which DNA markers are best used to capture this diversity. Sequence recovery, annotation, and sequence resolution among taxa were evaluated for four established DNA markers (matK, rbcL, ITS2, and the trnL P6 loop) in silico using database sequences and in situ using high throughput sequencing of 35 soil samples from a remote boreal wetland. Overall, ITS2 and rbcL are recommended for DNA metabarcoding of vascular plants from eDNA when not using customized or geographically restricted reference databases. We describe a new framework for evaluating DNA metabarcodes and, contrary to existing assumptions, we found that full length DNA barcode regions could outperform shorter markers for surveying plant diversity from soil samples. By using current DNA barcoding markers rbcL and ITS2 for plant metabarcoding, we can take advantage of existing resources such as the growing DNA barcode database. Our work establishes the value of standard DNA barcodes for soil plant eDNA analysis in ecological investigations and biomonitoring programs and supports the collaborative development of DNA barcoding and metabarcoding.

Concepts: Vascular plant, Ecosystem, Sequence, Barcode, Biodiversity, DNA barcoding, Plant, Species


Adulterant herbal materials are a threat to consumer safety. In this study, we used DNA barcoding to investigate the proportions and varieties of adulterant species in traditional Chinese medicine (TCM) markets. We used a DNA barcode database of TCM (TCMD) that was established by our group to investigate 1436 samples representing 295 medicinal species from 7 primary TCM markets in China. The results indicate that ITS2 barcodes could be generated for most of the samples (87.7%) using a standard protocol. Of the 1260 samples, approximately 4.2% were identified as adulterants. The adulterant focused on medicinal species such as Ginseng Radix et Rhizoma (Renshen), Radix Rubi Parvifolii (Maomeigen), Dalbergiae odoriferae Lignum (Jiangxiang), Acori Tatarinowii Rhizoma (Shichangpu), Inulae Flos (Xuanfuhua), Lonicerae Japonicae Flos (Jinyinhua), Acanthopanacis Cortex (Wujiapi) and Bupleuri Radix (Chaihu). The survey revealed that adulterant species are present in the Chinese market, and these adulterants pose a risk to consumer health. Thus, regulatory measures should be adopted immediately. We suggest that a traceable platform based on DNA barcode sequences be established for TCM market supervision.

Concepts: Ming Dynasty, Tang Dynasty, Chinese language, Medicine, China, Barcode, Species, DNA barcoding