Discover the most talked about and latest scientific content & concepts.

Concept: Bald Eagle


We describe eight, mostly complete white-tailed eagle (Haliaëtus [Haliaeetus] albicilla) talons from the Krapina Neandertal site in present-day Croatia, dating to approximately 130 kyrs ago. Four talons bear multiple, edge-smoothed cut marks; eight show polishing facets and/or abrasion. Three of the largest talons have small notches at roughly the same place along the plantar surface, interrupting the proximal margin of the talon blade. These features suggest they were part of a jewelry assemblage, — the manipulations a consequence of mounting the talons in a necklace or bracelet. An associated phalanx articulates with one of the talons and has numerous cut marks, some of which are smoothed. These white-tailed eagle bones, discovered more than 100 years ago, all derive from a single level at Krapina and represent more talons than found in the entire European Mousterian period. Presence of eight talons indicates that the Krapina Neandertals acquired and curated eagle talons for some kind of symbolic purpose. Some have argued that Neandertals lacked symbolic ability or copied this behavior from modern humans. These remains clearly show that the Krapina Neandertals made jewelry well before the appearance of modern humans in Europe, extending ornament production and symbolic activity early into the European Mousterian.

Concepts: Human, Neanderthal, White-tailed Eagle, Bald Eagle, Eagle, Eagles, Sea eagle, Necklace


Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

Concepts: Wind power, Bald Eagle, World energy resources and consumption, Wind turbine, Eagle, Golden Eagle, Eagles, Coat of arms of Mexico


Second generation anticoagulant rodenticides (SGARs) are commonly used for rodent pest control in Norway resulting in the potential exposure of non-target raptor species. In this study the occurrence of flocoumafen, difethialone, difenacoum, bromadiolone and brodifacoum was determined in the livers of five species of raptors found dead in Norway between 2009 and 2011. The SGARs brodifacoum, bromadiolone, difenacoum and flocoumafen were detected in golden eagle (Aquila chrysaetos) and eagle owl (Bubo bubo) livers at a total SGAR concentration of between 11 and 255ng/g in approximately 70% of the golden eagles and 50% of the eagle owls examined in this study. In the absence of specific golden eagle and eagle owl toxicity thresholds for SGARs, a level of >100ng/g was used as a potential lethal range, accepting that poisoning may occur below this level. Thirty percent (7/24) of the golden eagle and eagle owl livers contained total SGAR residue levels above this threshold. Further estimation of the potential mortality impact on the sampled raptor populations was not possible.

Concepts: Bald Eagle, Eagle, Golden Eagle, Aquila, Eagles, Rodenticide, Coat of arms of Mexico, National symbols of Mexico


Polybrominated diphenyl ethers (PBDEs) are persistent and toxic flame-retardant chemicals widespread in the Great Lakes ecosystem. These chemicals are now being regulated and phased-out of the region; therefore it remains important to understand the extent of contamination in order to track the efficacy of recent actions. Here, Σ4PBDE congeners (PBDE-47, 99, 100, 153;wetweight basis unless indicated)were determined in liver tissues from Wisconsin river otters (Lontra canadensis; n = 35; 2009-2010) and Michigan bald eagles (Haliaeetus leucocephalus; n = 33; 2009-2011). In otters, Σ4PBDE ranged from0.5 to 72.9 ng/g, with a mean (±SD) and median (25th-75th percentile inter-quartile range) of 16.3 ± 16.4 ng/g and 11.3 (5.6-18.9) ng/g, respectively. The mean lipid-adjusted Σ4PBDE was 1377 ± 1485 ng/g. In eagles, Σ4PBDE ranged from 0 to 1,538.8 ng/g, with a mean and median of 74.3 ± 266.7 ng/g and 21.2 (5.7-28.9) ng/g, respectively. The mean lipid-adjusted Σ4PBDE was 5274.5 ± 19,896.1 ng/g. In both species, PBDE-47 accounted for >50% of the Σ4PBDE, followed by PBDE-99 and PBDE-100 (each ~17-19% of the total). The PBDE levels reported here in otters are similar to mammalian wildlife elsewhere, though the levels in eagles are among the highest worldwide across studied birds. The findings indicate that apex Great Lakes wildlife remain exposed to appreciable levels of PBDEs and more work is needed to understand whether such exposures are associated with adverse health outcomes.

Concepts: Median, Polybrominated diphenyl ethers, White-tailed Eagle, Great Lakes, Bald Eagle, Wisconsin, Eagle, Eagles


Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6.3). In this case, the increased precision in the fatality prediction lowered the level of authorized take, and thus lowered the required amount of compensatory mitigation.

Concepts: Prediction, Futurology, Wind power, Bald Eagle, Eagle, Golden Eagle, Aquila, Coat of arms of Mexico


Increasing development across the western United States (USA) elevates concerns about effects on wildlife resources; the golden eagle (Aquila chrysaetos) is of special concern in this regard. Knowledge of golden eagle abundance and distribution across the western USA must be improved to help identify and conserve areas of major importance to the species. We used distance sampling and visual mark-recapture procedures to estimate golden eagle abundance from aerial line-transect surveys conducted across four Bird Conservation Regions in the western USA between 15 August and 15 September in 2006-2010, 2012, and 2013. To assess golden eagle-habitat relationships at this scale, we modeled counts of golden eagles seen during surveys in 2006-2010, adjusted for probability of detection, and used land cover and other environmental factors as predictor variables within 20-km2 sampling units randomly selected from survey transects. We found evidence of positive relationships between intensity of use by golden eagles and elevation, solar radiation, and mean wind speed, and of negative relationships with the proportion of landscape classified as forest or as developed. The model accurately predicted habitat use observed during surveys conducted in 2012 and 2013. We used the model to construct a map predicting intensity of use by golden eagles during late summer across our ~2 million-km2 study area. The map can be used to help prioritize landscapes for conservation efforts, identify areas where mitigation efforts may be most effective, and identify regions for additional research and monitoring. In addition, our map can be used to develop region-specific (e.g., state-level) density estimates based on the latest information on golden eagle abundance from a late-summer survey and aid designation of geographic management units for the species.

Concepts: Bald Eagle, Eagle, Golden Eagle, Aquila, Eagles, Coat of arms of Mexico, Wedge-tailed Eagle, Verreaux's Eagle


Raptors are exposed to a wide variety of human-related mortality agents, and yet population-level effects are rarely quantified. Doing so requires modeling vital rates in the context of species life-history, behavior, and population dynamics theory. In this paper, we explore the details of such an analysis by focusing on the demography of a resident, tree-nesting population of golden eagles (Aquila chrysaetos) in the vicinity of an extensive (142 km2) windfarm in California. During 1994-2000, we tracked the fates of >250 radio-marked individuals of four life-stages and conducted five annual surveys of territory occupancy and reproduction. Collisions with wind turbines accounted for 41% of 88 uncensored fatalities, most of which were subadults and nonbreeding adults (floaters). A consistent overall male preponderance in the population meant that females were the limiting sex in this territorial, monogamous species. Estimates of potential population growth rate and associated variance indicated a stable breeding population, but one for which any further decrease in vital rates would require immigrant floaters to fill territory vacancies. Occupancy surveys 5 and 13 years later (2005 and 2013) showed that the nesting population remained intact, and no upward trend was apparent in the proportion of subadult eagles as pair members, a condition that would have suggested a deficit of adult replacements. However, the number of golden eagle pairs required to support windfarm mortality was large. We estimated that the entire annual reproductive output of 216-255 breeding pairs would have been necessary to support published estimates of 55-65 turbine blade-strike fatalities per year. Although the vital rates forming the basis for these calculations may have changed since the data were collected, our approach should be useful for gaining a clearer understanding of how anthropogenic mortality affects the health of raptor populations, particularly those species with delayed maturity and naturally low reproductive rates.

Concepts: Demography, Population, Population ecology, Bald Eagle, Eagle, Golden Eagle, Aquila, Coat of arms of Mexico


Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ(2) H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ(2) H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.

Concepts: Bald Eagle, Eagle, Golden Eagle, Aquila, Eagles, Coat of arms of Mexico, National symbols of Mexico, Altamont Pass


Biologists routinely use molecular markers to identify conservation units, to quantify genetic connectivity, to estimate population sizes, and to identify targets of selection. Many imperiled eagle populations require such efforts and would benefit from enhanced genomic resources. We sequenced, assembled, and annotated the first eagle genome using DNA from a male golden eagle (Aquila chrysaetos) captured in western North America. We constructed genomic libraries that were sequenced using Illumina technology and assembled the high-quality data to a depth of ∼40x coverage. The genome assembly includes 2,552 scaffolds >10 Kb and 415 scaffolds >1.2 Mb. We annotated 16,571 genes that are involved in myriad biological processes, including such disparate traits as beak formation and color vision. We also identified repetitive regions spanning 92 Mb (∼6% of the assembly), including LINES, SINES, LTR-RTs and DNA transposons. The mitochondrial genome encompasses 17,332 bp and is ∼91% identical to the Mountain Hawk-Eagle (Nisaetus nipalensis). Finally, the data reveal that several anonymous microsatellites commonly used for population studies are embedded within protein-coding genes and thus may not have evolved in a neutral fashion. Because the genome sequence includes ∼800,000 novel polymorphisms, markers can now be chosen based on their proximity to functional genes involved in migration, carnivory, and other biological processes.

Concepts: DNA, Gene, Genetics, Bald Eagle, Eagle, Golden Eagle, Aquila, Eagles


Quantifying individual variability in movement behavior is critical to understanding population-level patterns in animals. Here, we explore intraspecific variation in movement strategies of bald eagles (Haliaeetus leucocephalus) in the north Pacific, where there is high spatiotemporal resource variability. We tracked 28 bald eagles (five immature, 23 adult) using GPS transmitters between May 2010 and January 2016.

Concepts: White-tailed Eagle, Bald Eagle, Eagle, Golden Eagle, Eagles